\(
\def\WIPO{World Intellectual Property Organisation}
\)
Multi-stage fine-tuning of patent domain-specific DeBERTa for advanced patent landscape on SDGs/Decarbonization
2025
Formats
| Format | |
|---|---|
| BibTeX | |
| MARCXML | |
| TextMARC | |
| MARC | |
| DataCite | |
| DublinCore | |
| EndNote | |
| NLM | |
| RefWorks | |
| RIS |
Citer
Citation
Détails
Titre
Multi-stage fine-tuning of patent domain-specific DeBERTa for advanced patent landscape on SDGs/Decarbonization
Type d’élément
Journal article
Description
1 volume.
Résumé
This study presents a multi-stage fine-tuning approach using DeBERTa for advanced patent analysis and landscaping on SDGs and decarbonization technologies. The method incorporates FI subclass estimation with the significant improved accuracy on extracting relevant technologies from patent documents. The model outperformed previous BERT-based approaches in various tasks and was applied to analyze Japanese and PCT international patent applications. Key findings include the continued leading R&D by Japanese companies in SDGs/decarbonization area and the rapid emergence of Chinese firms. The study also introduced the "Japio-Decarbonization Patent Index" which can identify companies filing highly decarbonization-oriented patents. This research demonstrates the effectiveness of advanced NLP techniques in patent analysis, providing valuable insights for innovation promotion and technology trend prediction in sustainable development.
Source of Description
Crossref
Série
World Patent Information ; 81, June, 2025
Dans
World Patent Information
Ressources liées
Publié
Oxford [England] : Elsevier Ltd., 2025.
Langue
Anglais
Informations relatives au droit d’auteur
https://www.sciencedirect.com/science/article/abs/pii/S0172219023000108
Le document apparaît dans