\(
\def\WIPO{World Intellectual Property Organisation}
\)
Forecasting labor needs for digitalization : A bi-partite graph machine learning approach.
2023
Formats
| Format | |
|---|---|
| BibTeX | |
| MARCXML | |
| TextMARC | |
| MARC | |
| DataCite | |
| DublinCore | |
| EndNote | |
| NLM | |
| RefWorks | |
| RIS |
Cite
Citation
Détails
Titre
Forecasting labor needs for digitalization : A bi-partite graph machine learning approach.
Auteur
Type d’élément
Journal article
Description
1 volume.
Résumé
We use a unique database of digital, and cybersecurity hires from Swiss organizations and develop a method based on a temporal bi-partite network, which combines local and global indices through a Support Vector Machine. We predict the appearance and disappearance of job openings from one to six months horizons. We show that global indices yield the highest predictive power, although the local network does contribute to long-term forecasts. At the one-month horizon, the “area under the curve” and the “average precision” are 0.984 and 0.905, respectively. At the six-month horizon, they reach 0.864 and 0.543, respectively. Our study highlights the link between the skilled workforce and the digital revolution and the policy implications regarding intellectual property and technology forecasting.
Source of Description
Crossref
Série
World Patent Information ; 73, June, 2023.
Dans
World Patent Information
Ressources liées
Publié
Oxford [England] : Elsevier Ltd., 2023
Langue
Anglais
Informations relatives au droit d’auteur
https://www.sciencedirect.com/science/article/abs/pii/S0172219023000108
Le document apparaît dans