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Abstract 
 
In this paper we exploit a unique and rich dataset of patent applications and scientific 
publications in order to answer several questions concerned with two current phenomena on 
the way knowledge is produced and shared worldwide: its geographical spread at the 
international level and its spatial concentration in few worldwide geographical hotspots.  We 
find that the production of patents and scientific publications has spread geographically to 
several countries, and has not kept within the traditional knowledge producing economies 
(Western Europe, Japan and the U.S.).  We observe that part of this partial geographical 
spread of knowledge activities is due to the setting up of Global Innovation Networks, first 
toward more traditional innovative countries, and then towards emerging economies too.  
Yet, despite the increasing worldwide spread of knowledge production, we do not see the 
same spreading process within countries, and even we see some increased concentration in 
some of them.  This may have, of course, important distributional consequences within 
countries.  Moreover, these selected areas also concentrate a large and increasing 
connectivity, within their own country to other hotspots, and across countries through Global 
Innovation Networks. 
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1. Introduction 
 
Throughout the 20th century, the production of scientific and technical knowledge was largely 
confined to a few countries, and especially within the so-called Triad (Japan, Western 
Europe, and the US), for two main reasons.  First, it was these countries that hosted the 
largest universities, public research organizations and R&D-intensive companies, with the 
latter having a preference for keeping their research operations close to their headquarters 
(Castellacci and Archibugi, 2008; Chaminade et al., 2016; Patel and Pavitt, 1991).  Second, 
the Triad also hosted most of the foreign-based R&D operations of multinational companies 
(MNCs), while the branches or controlled firms in the developing economies were mostly 
trusted with unsophisticated tasks such as the adaptation of products and processes to local 
market conditions (Krishna et al., 2012).  This resulted in very limited foreign patenting 
activity, especially outside the Triad, in stark contrast with the increasingly global outsourcing 
of manufacturing (Gerybadze and Merk, 2014). 
 
Starting in the 1990s, two changes occurred.  First, some emerging economies, most 
notably in East Asia but also elsewhere, began gaining importance as knowledge originators 
(Branstetter et al., 2014).  Second, foreign direct investments (FDIs) became increasingly 
dictated by knowledge-seeking strategies, with international R&D operations aiming at 
getting access to foreign knowledge (Amendolagine et al., 2019; Reddy, 1997).  Return and 
circular high-skilled migrants reinforced this phenomenon (Saxenian, 2006), with 
international social networks helping to direct investments to the migrants’ countries of origin 
(Foley and Kerr, 2013; Useche et al., 2019).   
 
Large emerging economies such as those of China and India host nowadays not only the 
R&D operations of foreign MNCs, but also several important domestic actors.  It is not yet 
clear, however, whether they can be ranked among the new global science and technology 
powers, or are still confined to subordinate positions in the international division of research 
and inventive labor (Awate et al., 2012; Branstetter et al., 2014).   
 
Answering this question, however, requires scratching behind the surface of international 
statistics and country-level data.  Knowledge-seeking FDIs do not target countries as a 
whole, but specific locations therein.  Knowledge production, in fact, is dominated by 
economies of agglomeration, which results in its concentration in selected cities and regions 
(Feldman, 1994).  At the same time, important locations are neither self-sufficient nor they 
can rely exclusively on knowledge inputs coming either from their countries’ national science 
and innovation system or from large MNCs.  Rather, they are expected to take part in a 
network of international collaborations, investments or personal mobility, which allow them to 
exchange knowledge with other locations worldwide (Bathelt et al., 2004; Lorenzon and 
Mudambi, 2013; Moreno and Miguelez, 2012).   
 
In view of these considerations, it is important to examine the emergence of a global science 
and innovation system from a local perspective. 
 
First, one needs to map the knowledge production centers that, from within each country, 
contribute to the increasing dispersal of innovative activities worldwide and the increase or 
reversal of international knowledge exchanges.   
 
Second, in particular, when examining emerging countries, one also wishes to investigate 
whether the strengthening of their knowledge production centers goes along with an 
intensification of international collaboration and investments, or instead it occurs at the 
expense of their participation to innovative activities in the rest of world. 
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In what follows we produce both country- and local-level evidence.  First, we investigate the 
extent at which the globalization of knowledge production has progressed, due both to the 
emergence of new countries outside the Triad and an increase of cross-country exchanges 
(sections 2 and 3).  Second, we detect the cities and/or large metropolitan areas which stand 
behind the production of knowledge at the country level and examine the extent of their 
mutual, global connections (section 4).  Section 5 concludes.   
 
 
2. The internationalization of knowledge production 
 
In the following paragraphs we exploit patent and publication data at the country level to 
assess the extent at which the production of knowledge and innovation has internationalized, 
and to identify the key actors behind the observed trends.  When necessary, we compare 
the patent- and publication-based indicators with analogous indicators based on R&D or 
trade, among others. 
 
As explained in detail in the annex, our patent data cover all the worldwide patent families, 
from 1976 to 2017.  Roughly speaking, a (simple) patent family is the set of patent 
applications on the same invention filed in different countries’ patent offices.  The base unit 
of our analysis is the first filing for a set of patent applications filed in one or more countries 
and claiming the same invention.  Each set containing one first and, potentially, several 
subsequent filings is defined as a patent family.  By considering families, instead of 
individual patents, we avoid counting the same invention more than once.  We assume that 
the inventive activity behind such patents take place in the countries of residence of the 
inventors, according to the latter’s addresses as reported on the patent documents 
(occasional deviations from this assumption will be stated explicitly) (Webb et al., 2005). 
 
We pay special attention to internationally oriented (or foreign-oriented).  Foreign-oriented 
patent families concern those inventions for which the applicant has sought for patent 
protection beyond its home patent office.  This definition includes also patent applications by 
applicants filing only abroad, filing only through the PCT system or filing only at the EPO.  
Reciprocally, domestic-only patent families refer to those patent applications filed only at the 
applicant’s home office – regardless of how many filings in the home office there are within 
the same family – without any subsequent foreign filing though the Paris or PCT routes.  
Likewise, patent applications with applicants of more than one origin are, by our definition, 
foreign-oriented patent families.  In addition, about 30 percent of the patent families relate 
only to utility model protection, which are mostly domestic only.  Unless otherwise stated, we 
use international patent families as the unit of analysis for all patent statistics reported.  This 
relates mostly to the incomplete coverage of the domestic-only patents (and utility models) of 
many national collections in PATSTAT.  While the top national and international offices are 
usually well covered – namely USPTO, JPO, KIPO, CNIPA, EPO and WIPO – some other 
offices have limited coverage in PATSTAT.  For instance, the coverage in PATSTAT of 
national collection data from some top 20 patent offices – such as India, Indonesia, Iran 
(Islamic Republic of), Mexico and Turkey – is limited.  In addition, due to more limited 
information, we are less likely to geocode domestic only patent families and, even if so, we 
often do it at a lessen quality or precision.  This is another reason why we rely mostly on 
international patent families.  Occasionally, and if explicitly stated, we will produce some 
statistics based on the remaining patent families, which consist of domestic firms’ single 
patent applications to their national patent office. 
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As for publication data, we rely on Clarivate’s Web of Science, from 1998 to 2017. In this 
case, we assume the research conducting to the publication to take place in the countries of 
the institutions and organizations to which the authors declare their affiliation.  We have used 
all the collection (all fields) from 1998 onwards, but only worked with articles in scientific 
journals, and excluded proceedings, books, etc. 
 

We first examine the international concentration of both patents and publications.  In order to 
do so, we adapt the Herfindahl-Hirschman (HH) index to our needs, as follows: 
 

𝐻𝐻 = ∑ 𝑠𝑖
2

𝑁

𝑖=1

 (1) 

 
where N is the number of countries in our database and 𝑠𝑖 is each country’s share of the 
activity of interest (research, invention or others).  The HH Index ranges from 1/N to 1, where 
values equal or above 0.25 can be reinterpreted as if there are only four or less countries 
responsible for the indicator described and, hence, indicative of high concentration.  Notice 
that by taking the reciprocal of the HH index (that is:  1-HH) we obtain a measure of 
international dispersion.   
 
Figure 1 reports the yearly HH index for 195 countries, for several indicators:  total exports, 
inward foreign direct investments (FDI), R&D (as measured by either the expenditures or 
staff employed, in full time equivalent), internationally oriented patents, and scientific 
publications (plus total population, as benchmark).1 
 
Two stylized facts stand out.  First, knowledge-related and innovation activities, such as 
R&D expenditures, patents, and publications, are way more concentrated than population, 
trade and FDI.  But, second, the concentration of such activities declines over time as much 
as, if not more, than that of trade and FDI.   
 
Two further stylized facts emerge from Figure 1, which are worth stressing.  First, R&D 
expenditures are more concentrated than R&D personnel.  This implies that while we can 
find R&D employees everywhere across the world, their budgets differ widely.  Their outputs 
differ too, with both patents and publications also being more concentrated than R&D 
personnel.  This implies that researchers’ and inventors’ productivity, as measured by the 
number of patents and publications per person, differs widely by country.   
 
Second, we observe a slight change in trend for R&D expenditures and patents after 2008, 
at the onset of the Great Recession.  Whether this is a temporary, business-cycle-related 
occurrence, or the beginning of an inversion of long-term globalization trends is still an open 
question. 
 
  

                                                
1 We considered the countries with missing data as having 0% of the global share.  This has the 
potential of overestimating concentration if one or more large economies are missing.  After inspection 
of our data, we did not find any large or medium size country being unreported. 
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Figure 1:  HH index for patents, publications and other variables 

 
Source:  Authors based on PATSTAT, PCT and Web of Science data.  R&D and R&D personal are retrieved 
from the UNESCO Institute for Statistics, while trade and FDI data from the World Development Indicators, the 
World Bank. 

 
 
So far, we have limited ourselves to counting patents and publications, and ignored that their 
scientific or technological importance (impact on subsequent research) can vary widely.  
We can measure such importance with the number of citations both patents and publications 
receive, respectively from other patents and from other publications (forward citations; Jaffe 
and de Rassenfosse, 2017).  In the case of patents, some correlation also exists between 
forward citations and economic value (Jaffe and de Rassenfosse, 2017). 
 
We ask whether the decreasing concentration described so far concerns also the most 
important and/or valuable items (patents and publications), namely those that received the 
most citations over 5 years after the date of, respectively, first filing at a patent office or 
appearance in a journal.  To this end, Figure 2 compares the HH indexes calculated for 
either the top-10% or top 5% most cited items with the general HH index (as calculated on 
all items, irrespective of the citations received).  We first observe that the concentration of 
both highly-cited patents and highly-cited publications is higher than that of the general 
concentration, which implies that the higher the importance or value of knowledge, the more 
concentrated its production.  At the same time, though, the concentration of highly-cited 
items declines, over time, faster than the general concentration, towards which it converges.  
This implies that emerging countries do not only produce more and more knowledge, but 
also knowledge that is highly valuable and important. 
 
The main exceptions to this trend concern patent production in the 1980s (a period we 
cannot cover for publication) and after the Great Recession of 2008, when concentration 
increases.  Part of the explanation of the latter period increase is the extraordinary 
appearance in the last decade of Eastern Asian economies, particularly Republic of Korea 
and China, as main hubs of patent production, which we will discuss in the next section.  
However, other factors may also be at play.  We look at this in the following paragraphs. 
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Figure 2:  HH index, by forward citations received 

  
Patents Scientific publications 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
We hypothesize that the patterns found in figures 1 and 2 may be due to a succession of 
cycles marked by the appearance and rapid development of certain breakthrough 
technologies, followed by diffusion.  At the beginning of each cycle (in the 1970s and the 
2010s), highly-cited patents concentrate in leading countries, while during the diffusion phases 
inventive activities spread out (on this hypothesis, see Crescenzi et al., 2019). 
 

Figure 3 looks at patents and splits them either into high versus non-high technologies 
(left panel) or into low- and high-complex technologies (right panel), based on their IPC 
classification (where IPC stands for International Patent Classification) (to identify high-
complexity patents, we follow Fleming and Sorenson, 2004, and Sorenson et al., 2006).  
Intuitively, the high versus non-high distinction (as defined by Eurostat2) attains to the maturity 
reached by the technology with, say, nanotechnology standing higher than textile.  As for 
discrete versus complex technologies, it attains at whether a new product or process can be 
protected, respectively, by a single or a handful of patents (as it is the case with new chemical 
formulas for drugs or materials) or by a large number of patents combined which result from 
the combination of many new features, each protected by a patent (as it is the case with, say, 
smartphones or means of transport).   
 

Patents in high and complex technologies show a similar pattern:  they are systematically 
more concentrated than the others, their concentration increases during the 1980s (after an 
initial decline in the 1975s), declines later on and picks up again in the 2010s.  However, the 
1980s-2000s pattern is more extreme for patents in complex technologies.  This lends some 
support to the hypothesis that the most disruptive and breakthrough innovation activities first 
determined a concentration increase in high-income countries, with low-and middle-income 
countries following only later on (D’Agostino and Santangelo, 2012; Crescenzi et al., 2019).  
As for the increase of concentration in the 2010s, this is most visible for high-complex 
technologies. 
  

                                                
2 http://ec.europa.eu/eurostat/cache/metadata/Annexes/pat_esms_an2.pdf 

http://ec.europa.eu/eurostat/cache/metadata/Annexes/pat_esms_an2.pdf
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Figure 3:  HH index patents, by type 

  
High-tech vs low-tech patents Complex vs discrete tech. 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
Figure 4:  HH index, by fields 

  
Patents Publications 

Source:  Authors based on PATSTAT, PCT and Web of Science data.  Note:  The humanities field has been 
excluded from panel b.  Early on, WoS did not include many Humanities journals and those few were in English 
from the U.S. and UK.  The number of journals has increased over time and, in the Humanities (where English 
does not rule as in other disciplines), this means having included non-English speaking journals, where 
publications form non-Anglophone countries are most numerous.  To put it differently, the high level and dramatic 
converge you see witness of the changing composition of WoS for Humanities, rather than any real pattern. 

 
We further explore this issue in Figure 4, where we split patents by specific technologies and 
by scientific field.3 Left panel shows that the patterns observed for high technologies is mostly 
driven by Semiconductors and Optics, AudioVisuals, and, to a lesser extent, by Information 
and Communication technologies (ICTs).  Conversely, the increase of concentration in the 
2010s seems largely dominated by BioPharma technologies and, to a lesser extent, by Civil 
Engineering and Consumer Goods.  Right panel repeats the analysis for scientific fields (which 
start only in 1998).  All the fields show a steady decrease of the HH index.  However, there are 

                                                
3 For details on the grouping of patents and publications into broad fields, see annex 2. 
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still large heterogeneity across fields, especially during the first part of the period analyzed.  
In addition, some fields, such as Applied Biology, Chemistry, and Engineering, show a slight 
upturn at the very end of the period, which is possibly in accordance with what we found for 
patents in related technologies. 
 

Overall, we can conclude that the geographical dispersion of knowledge production has 
increased for the most part of our observation period, but also that the general trend hides 
important differences across technologies and level of importance of patents, as well as 
scientific fields (albeit less so).  
 
While aggregate concentration figures clearly suggest that the production of scientific and 
technological knowledge has increasingly dispersed across countries, they beg the 
questions of which countries contributed the most to this trend. 
 
Figure 5 shows that, from 1970 to around 2000, only three countries – namely the United 
States of America (U.S.), Japan and Germany – accounted for two thirds of all patenting 
activity worldwide.  Adding the remaining Western European economies – in particular the 
United Kingdom (U.K.), France, Switzerland and Italy – takes the figure to around 90%.   
 
Starting in the 2000s, the rest of the world – a heterogeneous group that ranges from some 
high-income countries, such as Canada or the Republic of Korea, to mostly middle- and low-
income economies – has outpaced in its share of knowledge production not only Western 
Europe but also the U.S. and Japan.  China and the Republic of Korea are the two countries 
with the most impressive record, but they do not explain entirely the observed trend.  Even 
after adding their shares to those of the Triad, the remaining countries in the rest of the world 
increase their share of patents from less than 6% at the beginning of the 1970s to around 
13% during the 2000s.  The share arrives to around one third if we add China and the 
Republic of Korea to the figures of the rest of the world. 
 
In the last two decades, scientific publications have spread even more widely, with the rest 
of the world (including China and R. Korea) moving from less than a quarter of all scientific 
publication to around 40% at the end of the period.  Again, this change is largely due to 
China and South Korea, but the growth is visible even without taking them into account.   
 
Table 1 suggests that the most dynamic newcomer countries besides China and R. Korea 
are mostly found in Asia, whether in its West (Turkey, Israel), South-East (India, Singapore) 
and Centre (Iran).  African countries stand out for their absence (with their main knowledge 
producing countries, Egypt and South Africa, contributing very little to both worldwide 
patenting and publishing).  In Latin America, only Brazil is a meaningful player and one 
which exhibits some growth.  Oceania – mostly pushed by Australia – has seen a small but 
steady increase in scientific publication shares, while patent shares have decreased since 
the early 2000s. 
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Figure 5:  Evolution of patenting and publication share by top economies 

 

 
Source:  Authors based on PATSTAT, PCT and Web of Science data. Notes:  Other Western Europe excludes 
Germany.4   

                                                
4 Western Europe includes the 15 economies that were members of the EU prior to May 1, 2004, 
along with Andorra, Iceland, Liechtenstein, Malta, Monaco, Norway, San Marino and Switzerland.   
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Table 1:  Evolution of patenting and scientific publishing, by regions and selected 
countries 

  Patents   Publications 

Region (country) 1970-1979 1980-1989 1990-1999 2000-2004 2005-2009 2010-2014 2015-2017   2000-2004 2005-2009 2010-2014 2015-2017 

SCSE Asia 0.1% 0.1% 0.6% 1.0% 1.6% 2.1% 2.0%   3.2% 4.8% 6.7% 7.5% 

India 0.0% 0.0% 0.1% 0.5% 1.0% 1.4% 1.3%   2.0% 2.6% 3.2% 3.5% 

Singapore 0.0% 0.0% 0.1% 0.3% 0.4% 0.4% 0.3%   0.4% 0.5% 0.5% 0.5% 

CEE 3.2% 3.8% 4.9% 1.1% 1.3% 1.4% 1.3%   5.8% 5.9% 5.8% 5.6% 

Russian Federation 0.7% 1.4% 2.7% 0.4% 0.5% 0.5% 0.4%   2.4% 1.9% 1.7% 1.8% 

Poland 0.2% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2%   1.1% 1.3% 1.3% 1.3% 

LAC 0.3% 0.3% 0.3% 0.4% 0.5% 0.6% 0.6%   3.0% 3.5% 4.0% 4.0% 

Brazil 0.1% 0.1% 0.1% 0.2% 0.2% 0.3% 0.3%   1.5% 2.0% 2.3% 2.3% 

Western Asia 0.3% 0.3% 0.7% 1.1% 1.4% 1.6% 1.7%   2.3% 2.8% 3.0% 3.1% 

Turkey 0.0% 0.0% 0.0% 0.1% 0.2% 0.3% 0.4%   1.0% 1.5% 1.7% 1.7% 

Israel 0.2% 0.3% 0.6% 0.9% 1.2% 1.1% 1.1%   0.9% 0.8% 0.6% 0.6% 

Oceania 0.8% 1.1% 1.1% 1.4% 1.3% 0.9% 0.9%   2.4% 2.4% 2.6% 2.8% 

Australia 0.7% 1.0% 1.0% 1.2% 1.1% 0.8% 0.8%   2.0% 2.1% 2.3% 2.5% 

Africa 0.3% 0.2% 0.2% 0.3% 0.2% 0.2% 0.2%   1.1% 1.3% 1.6% 1.8% 

Egypt 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%   0.3% 0.3% 0.4% 0.5% 

South Africa 0.2% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1%   0.3% 0.4% 0.4% 0.4% 

Total 4.8% 5.8% 7.8% 5.3% 6.4% 6.8% 6.7%   17.8% 20.7% 23.6% 24.9% 
Source:  Authors based on PATSTAT, PCT and Web of Science data. Notes:  CEE = Central and Eastern 
Europe; LAC = Latin America and the Caribbean; SCSE Asia = Southern, Central and South-eastern Asia.5 

 
Figures for highly-cited patents and scientific publications exhibit a similar geographical 
pattern as that for all items, but with a greater and more resilient concentration in the U.S., 
and a more rapid declines of European and Japanese shares (Figure 6).  China stands out 
for its particularly rapid ascent, compared to other countries in the rest of the world. 
 
Summing up, knowledge production has increased in volume and spread more globally, but 
there is still a limited set of countries that produce the bulk of it, especially when it comes to 
highest quality outputs.   
 
We now move on to enquire on whether, at least for the countries involved, the 
internationalization process has also translated into a globalization one, that is in a tighter 
integration of the established and emergent knowledge producers.   
 
  

                                                
5 These regions are closely based on the geographic regions from the U.N.  Statistics Divisions (UNSD) 
methodology (https://unstats.un.org, accessed March 2019).  The only differences are that CEE includes all 
countries in the UNSD’s Northern and Southern Europe categories not included in Western Europe and that SCE 
includes Mongolia.   

https://unstats.un.org/
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Figure 6:  Evolution of top-cited patents and scientific publications by top economies 
and regions 

  
               Patents                        Scientific publications 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
3. International knowledge production:  how much is it global, too? 
 
When it comes to examining the cross-country integration of knowledge production, it is 
useful to refer to the concept of Global Innovation Networks (GINs).6  A GIN can be defined 
as a globally organized web of collaborative interactions between organizations (whether 
firms, universities, international agencies or others), engaged in knowledge production and 
with a relevant innovation outcome.  GINs result from the knowledge-seeking strategy 
pursued by such organizations, and cannot be reduced to a side effect of market penetration 
and production outsourcing strategies of MNCs (Castellani et al., 2006; Castellani and 
Zanfei, 2007). 
 
GINs are kept together by both organization-based linkages (Bathelt et al., 2004; Dunning, 
1998) and personal relationships (Lorenzen and Mudambi, 2013), including those resulting 
from the international mobility of scientists, innovators and entrepreneurs (Breschi et al., 
2017; Franzoni et al., 2012; Saxenian, 2006, 2002).   
 
It is important to underline that these increasingly interconnected GINs are happening in the 
context of an overall increase of collaboration in the production of scientific and technological 
knowledge.  Already in 1998, teams produced the majority of scientific papers.  By 2017, 
lone wolf scientists had become half as important as they were 20 years before.  The size of 
the teams is also increasing.  In 2017, the average scientific paper required almost two more 
researchers – on average – than 20 years previously (Figure 7).  Moreover, the average 
team size has shifted upward across the board, making teams of six or more scientists the 
most common in the production of scientific knowledge.  Teams collaborating to achieve 
technological innovations (patents) are smaller but follow a similar increasing trend, with the 
average team number doubling since the early 1970s.  By the mid-2010s, two thirds of 
inventions were collaborative efforts.  All team sizes of inventors are increasing at the 
expense of single-inventor patents.  

                                                
6 See Chaminade et al. (2016). 
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Figure 7:  Inventor and scientific team size, by period 

  
Patents Publications 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
We now examine the importance, geographical distribution, and evolution over time of 
international patent and publication teams.  We geo-localize inventors on the basis of their 
address, while for authors we consider their affiliation, which we also geo-localize.  We 
consider a team to be international whenever it includes inventors or authors from different 
countries.7  
 
Figure 8 summarizes the main trends, starting in the 1970s for patents and in 1998 for 
publications.  The most striking pattern concerns publications, whose share of internationally 
co-authored ones has grown from 17% to 25% in less than 20 years.   
 
International co-inventorship is a much less frequent phenomenon, which never went 
beyond 11% of total patents.  Yet, it also exhibits an impressive growth up until the second 
half of the 2000s, during which it more than doubles.  After the Great Recession, the share 
has become slightly negative.  The fact that international teams account for a higher 
percentage of published scientific articles than of patents indicates that science production is 
more internationalized than technology production. 
 
We explored if the cooldown of co-inventorship is only an artifact due to computing the share 
– that is, international co-inventorships still growing, but national teams growing faster.  
In unreported results, we see that both overall co-inventorships and international 
co-inventorships have been increasing at a strong pace for most of the past 40 year.  
However, the number of international co-inventions has a notable slowdown from 2010 
onwards, while the total number of co-inventions keeps rising. 
  

                                                
7 In scientific publication there are instances of double affiliation of authors.  Unfortunately, one cannot uniquely 
identify affiliations and authors,  
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Figure 8:  International co-inventorship and co-publishing by country, percent  

  
International co-inventorship International scientific co-publishing 

Source:  Authors based on PATSTAT, PCT and Web of Science data.  Notes:  int.  co-inventorship = share of 
patents with more than one inventor located in at least two countries; int.  co-publications = share of scientific 
articles with more than one affiliation located in at least two countries.   
 

 
Figure 9:  International co-inventorship and co-publication, by country  

  
International co-inventorship International scientific co-publishing 

Source:  Authors based on PATSTAT, PCT and Web of Science data.  Notes:  int.  co-inventorship = share of 
patents with more than one inventor located in at least two countries; int.  co-publication = share of scientific 
articles with more than one affiliation located in at least two countries.   

 
The left panel of Figure 9 breaks down international patent data by country of the patent 
applicant, for the top patenting countries worldwide.  With the exception of Japan and, to a 
lesser extent, the Republic of Korea, most top-filing countries show a large international  
co-inventorship share.  The U.S. and Western European countries show a rising trend.  
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Smaller economies with internationally linked and dense urban and innovation areas – such 
as Switzerland – are very prone to engage in international collaborations.  India also shows 
a high rate of international co-inventorship.  In East Asia’s top economies things are 
different.  Up to the mid-1990s, the share of international co-inventorship in China was 
extraordinarily large, but the volume was small.  Thereafter, when the volume of Chinese 
patenting picked up, the share of international co-inventorship dropped dramatically, 
although it remained larger than the very low shares of Japan and the Republic of Korea.   
 
Overall, these trends suggest that the globalization of inventive activities mostly concerned 
the U.S. and Western Europe along with China and India, with China getting less and less 
self-reliant as it developed its own innovation system (Chaminade et al., 2016; Plechero and 
Chaminade, 2010).  China’s dynamics may be in part responsible for the downturn of 
international co-inventorship after the Great Recession.  However, we notice that other big 
economies, most notably the US, also reduce their share of international co-inventorship 
after 2010 (France even before that).  In their case, it is less likely that this is due to a 
composition effect, as their national innovation systems were well formed in 2010.   
 
A quick look at country trends for international publication team trends reveals a starkly 
different picture (right panel of Figure 9).  Here globalization touches all countries and 
increase relentlessly.  Once again, globalization of science and technology follow different 
paths.   
 
 
Figure 10:  Co-patenting/co-publishing across country groups 
(G4 vs Rest of the World) 

 
International co-inventorship International scientific co-publishing 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
In Figure 10, we split the patents and publications by international teams in three groups, 
namely those whose teams include only inventors or authors from within the U.S., Japan, 
Canada and Western Europe (as defined above) (G4), inventors or authors from only the 
rest of the world (RoW), and inventors or authors from both G4 and the rest of the world 
(RoW) – with a dashed line indicating intra Germany-Japan-US ties.   
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Figure 11:  Concentration and spread of global interactions 
International co-inventorship by country pairs International co-publications by country pairs 

  
1998-2002 1998-2002 

  
 2011-2015  2011-2015 

Source:  Authors based on PATSTAT, PCT and Web of Science data.  Notes:  patents (publications) with more than one inventor (scientists) located in at least two countries.  Only top 10% 
international corridors of each period reported.  Bubbles report the share of links only for selected countries and regions. 
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When examining patents, we notice that, at the beginning of the period analyzed 
(the 1970s), the G4 countries host the large majority of international teams, almost 80%, 
followed suit by the combination G4-RoW.  But the two groups follow different trends, and 
G4-RoW collaborations almost catch up with intra-G4 ones by the turn of the century.  
Teams spanning across countries within the rest of the world remain marginal throughout 
the period. 
 
Patterns and trends of scientific publications are, once again, rather different.  First, the 
share of intra-G4 international publication teams is way less preponderant and decreases 
faster than for patents, starting at around 53% in 1998, down to around 32% by the end of 
the period.  The share of teams combining G4 authors and authors from the rest of the 
world, conversely, increases faster and comes to control over 55% of internationally 
authored publications.  More strikingly, the share of teams comprising authors from the rest 
of world only follows clearly an upward trend, but remains small compared to the two other. 
 
Figure 11 shows the top-10% largest collaboration corridors, for patents and publications, 
and for two time-windows.  Although concentration of collaborations is decreasing as new 
stakeholders enter the various collaboration networks, it is only a few countries besides the 
G4 that explain the trend.  “New” entrants such as China, India or Brazil – also mostly link 
with these economies – take the lion’s share, typically with the U.S. and a few Western 
European countries, such as U.K. and Germany.   
 
As for collaborations not involving any G4 country, the main players are China, India, 
Singapore and, to a lesser extent, Australia, Brazil, Argentina, Mexico and South Africa – all 
of which have increased their participation in the subnetwork, although mostly for scientific 
co-publication.  But their connections still mostly involve one of the big three – particularly 
the U.S. and Europe – rather than another non-core location.   
 
Overall, the scientific and technological international collaboration trends suggest that the 
globalization of inventive activities mostly concerned the U.S. and Western Europe along 
with China and India. 
 
 
4. Local analysis:  Who belongs to the Global Innovation Network? 
 
4.1 City hubs versus niche clusters 
 
Clusters are the archetypical form of agglomeration/concentration of any type of economic 
activity, including knowledge production.  As defined by Porter (2000), clusters are 
“geographic concentrations of interconnected companies, specialized suppliers, service 
providers, firms in related industries, and associated institutions (e.g., universities, standards 
agencies, trade associations) in a particular field that compete but also cooperate” (Porter, 
2000, p.  16).   
 
The intellectual origins of the cluster idea go back as long as Alfred Marshall’s contributions 
on why industries agglomerate.  He defined what went on to be known as Marhsallian 
districts as an “industry concentrated in certain localities” (Marshall, 1920, p.  268), which he 
could clearly observe in places like Birmingham, Bedfordshire, Buckinghamshire, 
Manchester or Sheffield during the second half of the XIX century.   
 
 



 

18 
 

Figure 12:  Sticky knowledge in space  
Patents per small administrative area Publications per small administrative area 

  
1996-2000 1996-2000 

  
2011-2015 2011-2015 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 
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While Marshallian districts still play a key role in many national economies, they may miss the 
inter-industry connections that characterizes and make successful more diversified clusters 
(Porter, 2000, p.  21), such as those hosted by large cities and metropolitan areas (Glaeser et 
al., 1992).  The compact nature of cities facilitates sharing and communication, leading to 
increasing returns of agglomeration economies (Lucas Jr, 1993).  In fact, as Jacobs (1969) 
already noticed, innovation is mostly an urban phenomenon.  Jacobs (1969) stressed that, 
while Marshallian externalities in clusters/industrial districts are mostly intra-industry, the 
crucial type of spillovers are across industries, allowing cross-fertilization of ideas. 
 
Innovation-based clusters are only a particular case of business clusters, in where the rate of 
innovation, and innovation of high added value, moves extraordinarily fast.  The key element 
was, once again, the speed by which knowledge and information spread to firms located in the 
cluster, much faster than firms located outside, and this happened much faster in Silicon 
Valley compared to Boston.  Engel and del-Palacio (2009) and Engel (2015) summarized the 
concept of clusters of innovation as “global economic hotspots where new technologies 
germinate at an astounding rate and where pools of capital, expertise, and talent foster the 
development of new industries and new ways of doing business” (Engel, 2015, p.36). 
 
In this section, we explore how various types of agglomerations of inventors and/or scientists 
have prospered or declined along with the internationalization of science and technology.  
In the following one we examine to what extent they are connected and participate to the 
Global Innovation Network.   
 
Figure 12 shows a preliminary view of the distribution of patents and publications, for two 
different time windows, on a spiky map.  Patents and publications are grouped across the 
smallest available administrative areas within each country, as provided by GADM maps 
(https://gadm.org).  By comparing the two time periods within each figure, we get an 
immediate sense of both the uneven distribution of inventive and scientific activities within 
each country, as well as of the emergence of new locations in the 2000s.  At the same time, 
we cannot detect any clear substitution pattern:  not only the emerging locations do not 
displace the incumbent ones, but most of the latter exhibit a marked increase in the number of 
patents or publications they produce.  This holds both at the international level and, at first 
sight, at the national level. 
 
The administrative units in Figure 12, however, do not distinguish between types of 
agglomeration.  Nor they are entirely comparable across countries, at least for two reasons.  
First, some agglomeration may encompass more than one administrative unit, or sit across 
them.  Second, the spatial and population size of administrative units vary across countries 
(see Annex 4 for details).  For example, the Chinese counties (the smallest units in the country 
administrative system) are bigger than both U.S. counties and European NUTS3 regions.  And 
even within each country, administrative units’ size can vary considerably, for historic reasons. 
 
For these reasons, we both geolocalize with high precision (exact latitude and longitude) all 
patents and publications in our dataset, and apply a DBSCAN clustering algorithm to identify a 
multitude of agglomerations worldwide (Ester et al., 1996).  In a nutshell, the algorithm 
consists on inspecting a small area around each patent or publication (a polygon), searching 
for other patents or publications therein, and then aggregate all significantly overlapping 
polygons, irrespective of the administrative units into which they fall (more details in Annex 4).  
We obtain two types of agglomerations, which we identify by running our DBSCAN algorithm: 
 

1. Global Innovation Hotspots (GIH), which we obtain by considering at once all 
scientific fields for publications or technological fields for patents.  They are large 
knowledge production centers, capturing the most innovation-dense geographical 
areas of the world in terms of scientific articles or patent families per square 
kilometer (km).  By definition, these areas are internationally comparable and 

https://gadm.org/


20 
 

20 
 

geographically distinct.  The same scientific publication or patent density determines 
the same hotspot anywhere in the world, although the threshold is different for 
scientific publication and patent data.  No patent or scientific publication address can 
be in two hotspots at the same time. 

 
2. Niche Clusters (NC):  which we obtain, after identifying the GIHs, by considering all 

patents and publications not yet assigned to any of them, and treat them separately 
by technology and field.  We created them in order to avoid biases arising from some 
scientific or technological fields being overrepresented in the scientific publication 
and patent data, respectively.  The NCs capture areas with high innovation density in 
one or more specific scientific publication or patenting fields, and that otherwise have 
not met the criteria to be a GIH.  The resulting clusters are also distinct geographical 
areas, as the overlapping clusters for different fields are consolidated into one 
cluster.  But they are only internationally comparable within their specific scientific or 
technological field (or fields). 

 
Different calibrations of the DBSCAN algorithms produce different numbers of GIHs and 
NCs.  With our preferred calibration, we obtain 174 of the former and 313 of the latter.   
 
Despite being measured independently from administrative units, most GIHs and NCs fall 
within the largest and/or most prosperous urban areas of the world.  However, innovation is 
more concentrated than both general economic activity and population.  Figure 13 places a 
large number of GIHs (orange) and NCs (blue) on the maps of selected continents or 
subcontinents, with night light as background so to compare their presence with actual 
economic activity.  Innovation follows a similar pattern of economic agglomeration, but it 
does not overlap entirely with it – witness the several bright spots that do not take any 
orange or blue color. 
 
Only 30 hotspots in 16 different countries are responsible for the creation of almost 70% of 
the patents and around 50% of the scientific publications produced.  More generally, very 
little inventive and scientific activity is produced outside the GIHs and NCs we identify, and 
even less outside the few countries hosting them.  Indeed, there are more than 160 
countries not hosting any hotspot or niche cluster.  The skewness exists also in these less 
innovation dense areas, as most of the knowledge is produced in few urban dense areas.  
Just 30 agglomerations located in only 24 different countries produce around 64% of patents 
and 61% of scientific publication outcomes within these non-innovation dense countries 
(Table 2).  Despite the concentration in these few agglomerations, the gap with the top 
hotspots is huge.  The volume of patents and scientific publication of the top 30 
agglomerations is only 0.4% and 4% of those of the top 30 hotspots, respectively. 
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Figure 13:  Global Innovation hotspots and specialized niche clusters, by region 

  
North American GIHs and NCs East-Asian GIHs and NCs 

  
European GIHs and NCs South American GIHs and NCs 

Source:  Authors based on PATSTAT, PCT and Web of Science data.  Notes:  Night light data from the U.S. National Oceanic and Atmospheric Administration’s (NOAA)  
National Geophysical Data Center. 
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Table 2:  Concentration of patenting and publishing among GIH and NC, and 
among less innovation dense countries, 1998-2017 

Top 30 hotspots (as share of all GIHs in the world)  

Hotspots (%) 30 (17.2%)   

Countries (%) 16 (47.1%)   

Patents (%) 3,234,850 (69.2%)   

Scientific articles (%) 10,987,971 (47.8%)   

Top 30 agglomerations in non-innovation dense countries   

Agglomerations (%) 30 (5.0%)   

Countries (%) 24 (14.4%)   

Patents (%) 11,491 (64.1%)   

Scientific articles (%) 484,689 (61.0%)   
Source:  Authors based on PATSTAT, PCT and Web of Science data.  Notes:  Only data from 1998 to 
2017 reported.  Top 30 is calculated separately for patent and publication data.  Top 30 agglomerations in 
non-innovation dense countries are based on the same methodology described for GIHs (annex 4).   

 
 
Table 3:  Largest GIH and NC, by number of patents 

GIH NC GIH NC 

Name 199195 Name 199195 Name 2011115 Name 2011115 

Tokyo 105393 Friedrichshafen 1433 Tokyo 234232 Suzhou 3182 
Osaka 38165 Bern 1284 Seoul 87494 Friedrichshafen 2981 
Nagoya 14523 Würzburg 1181 Osaka 78153 Cheonan 2800 
Frankfurt 14300 Okayama 1024 Shenzhen-HK 57321 Würzburg 2412 
Paris 13068 Rosenheim 806 SJ-San Francisco 51957 Qingdao 2165 
Köln-Dusseldorf 12010 Kōfu 768 Nagoya 43088 Hartford 2147 
Seoul 9227 Toyama 645 Beijing 30394 Bern 2069 
Stuttgart 8338 Iwakuni 633 New York City 25009 Bielefeld 1850 
SJ-San Francisco 6725 Schwäbisch G. 620 Boston 21918 Hyderabad 1806 
London 6698 Bielefeld 612 Frankfurt 21233 Kaohsiung 1795 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
Table 4:  Largest GIH and NC, by number of publications 

GIH NC GIH NC 

Name  199802 Name  199802 Name 2011115 Name 2011115 

Tokyo  184035 Kanazawa 14058 Beijing 282885 Changsha 36715 
Washington-
Baltimore 

148130 Iowa City 13496 New York City 249036 Changchun 33989 

New York City 142845 State College 13391 Tokyo 238489 Harbin 33425 
London 124926 Strasbourg 13040 Boston 231877 Hefei 32268 
Boston 123169 Ithaca 12958 Washington-

Baltimore 
228408 Jinan 31194 

Paris 117831 Marburg 12657 London 210969 Chongqing 28437 
SJ-San Francisco 106614 College Station 12263 Paris 184104 Kuala Lumpur 28413 
Osaka 94043 Saint Petersburg 12203 Seoul 183014 Gent 27504 
Los Angeles 77606 Brentwood 12147 SJ-San Francisco 174205 Padova 26429 
Amsterdam 71431 Padova 11886 Amsterdam 143607 Cairo 24657 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
 
The U.S. hosts the majority of GIHs and NCs (25%), followed by Germany (12.9%), 
Japan (9.4%), China (6.8%), the U.K. (4.9%) and France (4.3%).  By continent, Europe 
concentrates 40.5% of GIH and NC, followed by North America (28%), Asia (25%), 
Latin America (2.9%), Oceania and Pacific (2.7%), and Africa (1%).  Their average 
area is around 1,704.9 square km (3,013.44 square km for GIH and 977.45 square km 
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for NC), and the average population is 1,949,350 inhabitants in 2015 (3,794,694 for 
GIH and 923,504.4 for NC).  On average, they have produced 12,881.7 patents from 
1976 to 2015 (31,782.22 for GIH and 2,636.6 for NC), and 67,496.09 publications from 
1998 to 2018 (31,782.22 for GIH and 2,636.6 for NC).  Table 3 and Table 4 show the 
top-10 GIH and NC, in two different time windows, separately for patents and for 
scientific publications (longer lists and time periods are available in the annex).  
Clusters are labelled according to the name of the largest city they host (as measured 
by the number of inhabitants in 2005), with some manual double-checking (data from 
www.geonames.org).   
 
While GIHs usually coincide with large urban areas, not all such areas host a GIH, or at 
least a major one.  GIHs in Beijing, London, Los Angeles, New York, Seoul, and Tokyo 
concentrate a large amount of both patents and scientific articles, those related to 
Buenos Aires, Delhi, Istanbul, Mexico City, Moscow, Sao Paulo, and Tehran have a 
much smaller scale.  Others, such as Cairo, Bangkok, Kolkata, and Chongqing, 
conversely, host a NC.  Finally, a certain number of highly populated metropolitan 
areas – such as Jakarta, Karachi or Manila – do not host any knowledge agglomeration 
at all. 
 
 
Table 5:  Ranking GIH and NC, for selected fields, patents 

 
Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
On the other hand, some less dense urban areas in high-income and innovative 
countries host a large number of important NCs.  Table 5 and Table 6 rank, 
respectively, GIH and NC by their share and patents (publications) in selected fields.  
While, as expected, GIHs always come on top, some NCs (shaded in grey) do better 
than many GIHs in certain technological or scientific fields).  For instance, the NC 

Position Share patents Cluster name Position Share patents Cluster name

1 32.35% Tokyo 1 9.82% Tokyo

2 9.25% Osaka 2 4.33% Osaka

3 7.28% Seoul 3 3.91% San Jose-San Francisco

4 2.34% Nagoya 4 3.88% Mannheim

5 2.33% San Jose-San Francisco 5 3.63% New York City

6 2.11% Shenzhen-Hong Kong 6 2.73% Köln-Dusseldorf

7 1.42% Taipei 7 2.60% Paris

8 1.27% New York City 8 2.35% Boston

9 1.15% Paris 9 2.25% Seoul

44 0.29% Rennes 74 0.25% Bern

45 0.29% Amsterdam 75 0.25% Mumbai

46 0.29% Ann Arbor 76 0.23% Singapore

47 0.29% Singapore 77 0.23% Taipei

48 0.29% Stockholm 78 0.22% Bengaluru

49 0.27% Cambridge 79 0.22% Nürnberg

50 0.26% Copenhagen 80 0.22% Rochester

51 0.26% Cheonan 81 0.22% Beolgyo

52 0.25% Basel 82 0.21% Bridgeport

53 0.25% Grenoble 83 0.21% Vancouver

54 0.25% Portland 84 0.21% Okayama

…………………………………………………. ………………………………………………….

Audio-visual Biopharma

http://www.geonames.org/
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Rennes produce more patents in Audio-visual technologies than other GIH in that field, 
such as Amsterdam, Singapore, Ann Arbor, Stockholm, Cambridge or Copenhagen.  
The NCs Bern or Mumbai do better in biopharma patents than GIHs such as 
Singapore, Taipei, Nurnberg, Rochester or even Bengaluru.   
 
The NC Ithaca, in the US, do better in producing publications in applied biology 
compared to other big GIH, such as Brisbane, Köln-Dusseldorf, Munich, Seattle, 
Frankfort, Milan or Guangzhou.  In Earth Sciences, the NCs Canberra, Honolulu or 
Santiago de Chile are better positioned than Grenoble, Newcastle, or Austin.  All this 
indicates that, despite NC being, on average, smaller than most GIH, they can and do 
better than the latter ones in certain fields, in which the NC might be relatively more 
specialized. 
 
 
Table 6:  Ranking GIH and NC, for selected fields, scientific publications 

 
Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
When it comes to examining the behavior of knowledge agglomerations in relation to 
the growing internationalization of innovation, we notice immediately that, in the 
majority of the high-income and emerging countries, a limited number of GIHs and NCs 
continued to produce the same share or even more of the knowledge produced nation-
wide.   
  

Position Share pub. Cluster name Position Share pub. Cluster name

1 2.45% Tokyo 1 3.15% Beijing

2 1.93% Washington-Baltimore 2 2.46% Washington-Baltimore

3 1.87% Beijing 3 2.09% Paris

4 1.49% London 4 2.00% Tokyo

5 1.48% New York City 5 1.87% San Jose-San Francisco

6 1.35% Paris 6 1.65% Los Angeles

7 1.17% Boston 7 1.52% Boston

8 1.15% Osaka 8 1.48% New York City

9 1.13% San Jose-San Francisco 9 1.35% Amsterdam

31 0.63% Ithaca 57 0.45% Canberra

32 0.62% Mexico City 58 0.44% Honolulu

33 0.62% Brisbane 59 0.43% Santiago

34 0.61% Köln-Dusseldorf 60 0.43% Nijmegen

35 0.61% Munich 61 0.42% Bologna

36 0.60% Montpellier 62 0.42% Grenoble

37 0.60% Seattle 63 0.41% Prague

38 0.58% Nanjing 64 0.41% Newcastle

39 0.57% Mannheim 65 0.40% State College

40 0.55% Milan 66 0.40% São Paulo

41 0.54% Guangzhou 67 0.40% Austin

…………………………………………………. ………………………………………………….

Applied Biology Earth Sciences
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Figure 14:  Share of patenting and publishing in clusters, by selected countries 

  

  

  
Source:  Authors based on PATSTAT, PCT and Web of Science data. 
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In Figure 14 we look at the cumulative patents that GIHs host over time (by country).  
We draw blue lines for the total GIHs and for the GIHs in the top 25% of size rankings.  
We see, for instance, that the share of patents produced in GIHs in the U.S. goes from 
63% to 71% (71% and 78% respectively if we were adding NCs).  We also draw grey 
lines for the distribution of the top-10% most cited patents per year and technology.  
We clearly observe that highly-cited, highly-valuable patents are systematically more 
concentrated than the average patents.  We see similar patterns of increasing 
concentration for R. Korea, the U.K. and, especially, China and India (Figure 15, for 
China and India, where top-cited patents concentration is removed).  The evolution in 
Germany is more stable (though with a slight increase in recent years), and stable or 
even decreasing in France.   
 
 
Lighter blue and grey lines show which part of this share is attributable to the  
top-25% GIHs, per country.  The share of the most productive clusters has increased 
over time in all countries shown, except for France and Germany. 
 
The right panels of Figure 14 and Figure 15 reproduce these same figures for the 
case of scientific publications.  Again, we do not see a spatial spread of scientific 
activities over time in most countries (except for France and, especially, China), and 
even see slight increases in recent years for some countries. 
 
 
Figure 15:  Share of patenting and publishing in clusters, China and India 

  
Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
In Figure 16, we look at the time evolution of unequal contribution of clusters.  In this 
case, both GIHs and NCs are included in the analysis.  As shown in Figure 16 (left 
panel), despite only 10% of GIHs and NCs (49) concentrate 70-80% of all patent 
production, the concentration has gone down from almost 80% in the 1980s to around 
70% at the end of the period.  There is a slight increase of concentration in the last 
years, though one would need to wait some extra years to see whether there is indeed 
a change of tendency.  Right panel finds the same decreasing trend for publications, 
but starting from way less concentration levels (less than 50% throughout the whole 
period).   
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Figure 16:  Concentration of patenting and publishing among clusters 

  
Patents Publications 

Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
 
4.1 A global network of GIH and NC 
 
The GIHs and NCs we detected form a veritable GIN.  Figure 17 reports GIHs as 
orange nodes and NCs as blue ones, linked one another by national ties (blue) and 
international ones (green).  The thickness of the links represents the amount of bilateral 
collaborations between clusters, measured using  
co-inventorship data.  In these maps, only the top-10% largest links are depicted, 
between 2011 and 2015.   
 
We notice a thick web of ties between clusters in the US, Europe and Asia, as well as 
among clusters within countries (especially within the US).  However, it is difficult to 
appreciate the structure of the relations of the network in such a zoomed-out map.  
For this reason, we zoom-in below.   
 
In the US, it seems that large GIHs tend to collaborate both nationally and 
internationally.  Smaller GIHs or NCs seem to be more specialized in national 
interactions.  In Europe a similar pattern can be detected, with certain clusters in each 
country acting as gatekeepers that connect the national innovation system to the GIN.  
Clear examples can be found in France, with Paris connecting other French cities with 
the rest of the world, followed at some length by Lyon and Grenoble or the UK, with 
London being the central actor.  Germany shows some hierarchical structure too, 
though access points to the GIN are more numerous.  In China, this hierarchical 
structure is also evident, with Shanghai, Beijing, and Shenzhen acting as the top 
gatekeepers.  For completeness, Figure 18 repeats the same analysis for publication 
data. 
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Figure 17:  GIH, NC, and the Global Innovation Network, patent data 2011-2015 

 
Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
Figure 18:  GIH, NC, and the Global Innovation Network, scientific publication 
data 2011-2015 

 
Source:  Authors based on PATSTAT, PCT and Web of Science data. 

 
 
When drawing proper network graphs, as in Figure 19 (in two time periods), we can 
appreciate the position of individual GIHs or NCs in the network.  An innovation 
agglomeration is more “central” within this global network the more international 
connections it concentrates.  The nodes are located in space depending on their 
connectivity:  better connected nodes (in terms of the number of other nodes to which 
the focal node connects) are more central, and their size is determined by the total 
number of patents (rescaled).  As can be seen, large U.S. clusters are at the center of 
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the graph, which means they are the most connected and central.  The center of the 
picture also hosts other GIHs which are arguably highly connected, such as Tokyo, 
London, Shanghai, Beijing, Seoul, Paris, etc.  Smaller clusters in each country are 
connected to the big and highly connected ones in their own country, showing this 
hierarchical pattern we discussed early (one can clearly see this for Japan, R. Korea 
and the U.K.).  On the other hand, several hotspots that are larger or similar in size to 
the top U.S. agglomerations – for example, Tokyo – fail to occupy the same kind of 
central position in the global network. 
 
 
Figure 19:  GIH and NC positions in the GIN, patents 

   
Patent co-invention network 

2001-2005 
Patent co-invention network 

2011-2015 
Source:  Authors based on PATSTAT, PCT and Web of Science data.  Notes:  Only the world’s 10% 
largest links reported.  Bubble size reflects patent volume.  Bubbles positioned according to their network 
centrality.   

  
Figure 20:  GIH and NC positions in the GIN, publications 

   

Publication co-invention network 
2001-2005 

Publication co-invention network 
2011-2015 

Source:  Authors based on PATSTAT, PCT and Web of Science data.  Notes:  Only the world’s 10% 
largest links reported.  Bubble size reflects patent volume.  Bubbles positioned according to their network 
centrality.   
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The scientific network (for the two periods) is slightly different (Figure 20).  Many other 
nodes from the Rest of the World are as big and important in the network (they are 
located in the center of the graphs) as countries of the 9 countries highlighted.  
Moreover, nodes from many countries are located in the center, which indicates that 
the network of clusters in scientific production is way less hierarchical. 
 
 
4.2 The globalization of GIH and NC 
 
As discussed earlier, R&D-intensive MNCs have prioritized knowledge-seeking foreign 
expansion strategies; to a lesser extent, the same applies to large universities and 
public research organizations.  Such strategies put them into contact with GIHs and 
NCs around the world, and at the same time provide links between them.  As MNCs 
wishes to tap into global knowledge and talent pools, knowledge clusters become the 
most important location factor of innovation-oriented MNCs (Cantwell et al., 2010; 
McCann and Mudambi, 2005).   
 
But the relation between GIHs, NCs, MNCs and research organizations work in two 
ways.  Successful clusters cannot be self-sufficient in terms of the knowledge base 
they draw upon, and the organizations within them (whether firms, universities, public 
laboratories or other actors)  deliberately build international links to complementary 
pools of knowledge abroad, which would not otherwise be available locally (Awate and 
Mudambi, 2017; Bathelt et al., 2004; Lorenzen and Mudambi, 2013; Turkina and Van 
Assche, 2018). 
 
 
Figure 21:  Percentage of international patent and publication teams, inside vs 
outside GIHs and SNCs 

  
Patents Scientific publications 

Source:  WIPO based on PATSTAT, PCT and Web of Science data.  Notes:  Shares of the total patents 
and scientific publications, respectively.   

 
To what extent the internationalization process we examined in section 3 did impact on 
the GIN of GIHs and NCs?  In Figure 21 we split patents in two groups 
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 the patents produced by clusters, which we defined as those whose teams 
count at least one inventor address in a GIH or NC, 

 

 the patents produced outside clusters (no inventor address to be found in any 
cluster) 

 
We see that patents produced in GIHs and NCs tend to be more internationalized than 
those produced outside them.  The difference is even starker when focusing only on 
highly cited patents (10% more cited patents, per year and technology).  At the same 
time, though, the trend inversion of recent years is more pronounced for clusters’ 
patents, which would point to some evidence that more complex knowledge needs to 
be produced among geographically close researchers.   
 
Figure 21, right panel, repeats the same approach, but for scientific publications.  
Scientific publications produced in clusters are, on average, more internationalized that 
their non-cluster counterparts.  Again, the pattern for highly-cited publications is the 
same.  We see, however, larger globalization for the case of publications (and larger 
differences between clustered and non-clustered publications than what we see for 
patents), and we do not observe the decrease on internationalization of teams 
observed for patents. 
 
 
Figure 22:  GIHs’ and SNCs’ share of co-inventorship and co-publication 
interactions, by partner location 

  
Patents Publications 

Source:  WIPO based on PATSTAT, PCT and Web of Science data. 

 
Figure 22 looks at the globalization of GIH and NC.  We calculate the share of either 
patents or publications produced in them in which:   
 

1. the team includes at least one member located outside both the cluster and the 
country to which the cluster belongs (international) 

2. the team includes at least one member located outside the cluster, but no 
foreign ones (national) 

3. the team includes only local (within-cluster) members (local) 
4. The team is formed by a single inventor/author 
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Several patterns are worth reporting.  The percentage of scientific and inventive output 
in these innovation-dense agglomerations that does not involve any local, national or 
international collaboration has decreased.  Inventions with a single inventor went from 
one-third in the 1970s and 1980s to less than a quarter.  Scientific publication by a sole 
author went from more than 40 percent in the early 2000s to less than 25 percent in the 
second half of the 2010s.  The more the hotspots and niche clusters collaborate, the 
denser the network of knowledge they create.   
 
In other respects, the picture differs depending on whether it is scientific or inventive 
output.  For patents, the share of local-only teams is larger than that of national and 
international ones, while this is not the case for scientific publications.  Nevertheless, 
for scientific publications, international co-publication has continuously grown faster 
than national and local collaborations.  The same trend is observed for patents from the 
early 1980s until the second half of the 2000s. 
 
Since around 2005, however, there has been a fresh rise in the share of local-only 
patents.  The change coincides with a slowdown in the pace of globalization and 
internationalization generally, as reflected in slower growth of trade, FDI flows and 
financial integration.  It also coincides with a decrease in the share of patents 
generated by teams that are national but not just local.  The explanation for the latter 
could be that part of the slowdown in the globalization of knowledge creation and 
innovation has to do with the rise of local hotspots rather than with the development of 
new national innovation systems.  For scientific publication, however, the trend has 
been one of continued internationalization. 
 
Figure 23 provides details of the same trends at the country level, for a selection of 
high-income and emerging economies, respectively for patents and publications.  
We consider five time periods for patents, finishing in 2017; and four time periods for 
publications, from 2000 to 2017.   
 
The degree of clusters’ internationalization varies considerably across countries, very 
much in line with what we observed in sections 2 and 3, with countries like India or 
Switzerland being most open, and R. Korea and Japan at the other extreme.  In line 
with evidence in sections 2 and 3, we notice a loss of weight of international teams for 
countries like China in recent years.  However, in the majority of the cases the pattern 
in the last years is that of stagnation or slight growth.  We see several cases in which 
the share of national teams is reduced, like China, and the U.S. to some extent.  
Interestingly, the slight decrease in international teams is absorbed by local teams, 
whose share is larger for some countries in the last period. 
 
As reported above, we do not see downturn or stagnation in international co-publication 
patterns (rather the opposite) – Figure 22.  Moreover, we see that in all countries the 
increase in international teams is absorbed by local teams or individual authors, that 
see their shares systematically reduced in all countries analyzed. 
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Figure 23:  GIHs’ and NCs’ share of co-inventorship and co-publication 
interactions, by partner location, selected countries 

 
Patents 

 
Publications 

Source:  WIPO based on PATSTAT, PCT and Web of Science data. 
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5. Conclusions 
 
In this paper, we have exploited a rich dataset of patent applications and scientific 
publications in order to answer several questions concerned with two current 
phenomena on the way knowledge is produced and shared worldwide:  its 
geographical spread at the international level and its spatial concentration in few 
worldwide geographical hotspots.  We recap the main messages of the paper as 
follows. 
 
First, we indeed observe that the production of patents and scientific publications has 
spread geographically to several countries, and has not kept within the traditional 
knowledge producing economies (Western Europe, Japan and the US).  This meant 
already an achievement, as knowledge-related phenomena such as patenting, 
scientific production, R&D investments and so on have been always way more 
concentrated than other pillars of globalization, such as trade or FDI.  This has started 
to change, and concentration of the former has started to converge towards the latter. 
 
Second, in recent years we see an upturn degree of concentration in some variables 
(notably, R&D expenditures and patents, particularly those highly-cited and belonging 
to high-tech sectors).  The same occurred in some technological fields and for highly 
cited patents in the 1980s.  Both processes could be related to the appearance of 
certain breakthrough, highly-cited technologies in those years, that remain 
concentrated in central countries at the beginning, and only disseminate after some 
time and contribute to dispersion.   
 
Yet, by the end of the period, Western Europe, Japan and the U.S. concentrated 
around 70% of internationally-oriented patent activity, and more than 50% of all 
scientific activity, which is a lot.  In fact, it seems that the large majority of knowledge 
production spreading is due to a handful of emerging economies, notably China.  In the 
meanwhile, large areas of the world, notably in Africa and Latin America, are left out of 
the process of knowledge globalization. 
 
Part of this partial geographical spread of knowledge activities is due to the setting up 
of GINs and other knowledge networks, first toward more traditional innovative 
countries, and then towards emerging economies too.  However, networks among 
innovation-core countries dominate, with an increasing share of them between the 
latter and few emerging economies (with innovation networks among countries outside 
the Triad being relatively marginal).  This is less the case when it comes to scientific 
publications, where the role of emerging economies, or even networks among non-
traditional hubs are on the raise. 
 
Overall, we have seen an increasing degree of globalization of knowledge production 
(that is, the formation of international teams in producing ideas).  Interestingly, we see 
some stagnation of co-inventorship networks in recent years (which we do not see in 
publications).  Part of this slight decrease is due to China and other emerging 
economies.  As they start competing with more advanced economies in producing 
innovation, their need to rely in global networks is reduced – thus contributing 
negatively to the globalization of innovation. 
 
Yet, this does not seem to explain the whole picture, as some other large innovation 
economies see their share of international teams to stagnate.  One possible 
explanation is the decline of multilateralism after the Great Recession, which could be 
behind this downturn.  An alternative explanation is the increasing degree of complexity 
of innovation, which requires teams to be less geographically spread out.   
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Another important message of this paper relates to the geographical distribution of 
knowledge production within countries (both in traditional knowledge producers as well 
as in emerging ones).  Despite the increasing worldwide spread of knowledge 
production, we do not see the same spreading process within countries, and even we 
see some increased concentration in some of them.  This may have, of course, 
important distributional consequences within countries, which will need to be 
addressed properly in the near future.   
 
Not only these areas, which we have identified as GIHs and NCs, keep concentrating a 
larger amount of idea production.  We have provided evidence that they also 
concentrate a large and increasing connectivity, within their own country to other 
hotspots, and across countries through GINs.  Again, this goes against lagging behind 
areas of these countries, that not only produce less innovation, but also lack the 
necessary connectivity to the outside world to avoid being lock-in in non-innovative 
development paths.  In fact, we have seen that when it comes to external patent 
collaborations, clusters’ globalization has never slowed down:  team members external 
to the cluster are increasingly located abroad, whether in other clusters or not.  This 
reinforces the message that the main reason behind the overall reversal of 
globalization is the increasing self-sufficiency of many clusters, not a comeback of 
national innovation systems or the rise of new ones. 
 
Finally, we have provided some evidence that, even within GIHs, inequalities arise, 
with few of them being truly innovation and connectivity hubs, for both technology 
developments and scientific advancements, and others having a more subordinate 
position to these hubs (usually with one or few global hotspots per country, and other 
clusters connecting internationally through the former one).   
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Annex 1:  Main data sources 
 
Patent data 
 
The patent data used in this report cover all patent documents – granted or not – filed 
from 1970 to 2017 in all patent offices worldwide and available in the European Patent 
Office’s (EPO) PATSTAT database and WIPO’s Patent Cooperation Treaty (PCT) 
collections.  The unit of analysis is the first filing for a set of patent documents filed in 
one or more countries and claiming the same invention.  Each set containing one first 
and, potentially, several subsequent filings is defined as a patent family.  In the 
analysis, patent families are split into those oriented internationally and those oriented 
only domestically.  Internationally oriented patent families refer to applicants seeking 
patent protection in at least one jurisdiction other than their country of residence.  
These include patent families containing only patent documents filed at the EPO or 
through the PCT.  Conversely, domestic patent families refer only to filings in a home 
country, for instance, a Japan-based applicant filing only at the Japan Patent Office.  
The raw data come the European Patent Office’s (EPO) Worldwide Patent Statistical 
Database (PATSTAT, April 2019) and WIPO’s Patent Cooperation Treaty (PCT) 
collections.  In the analyzed period (1970-2017), these sources account for 49,286,675 
first patent filings and 26,626,660 subsequent patent filings, totaling 75,913,322 patent 
applications from 168 different patent offices.   
 
Unless otherwise stated, the report makes use of international patent families only as 
the unit of analysis for all patent statistics reported.  This relates mostly to the 
incomplete coverage of the domestic only patents (and utility models) of many national 
collections in PATSTAT.  While the top national and international offices are usually 
well covered – namely USPTO, JPO, KIPO, CNIPA, EPO and WIPO – some other 
offices have limited coverage in PATSTAT.  For instance, the coverage in PATSTAT of 
national collection data from some top 20 patent offices – such as India, Indonesia, Iran 
(Islamic Republic of), Mexico and Turkey – is limited.  As a result, the report makes use 
of the information of 8,955,990 international patent families containing 35,582,650 
different patent applications.   
 
 
Scientific publication data  
 
The scientific publication data used in this report comes from 27,726,805 records 
published from 1998 to 2017 in the Science Citation Index Expanded (SCIE) of the 
Web of Science (WoS), the citation database operated by the Clarivate Analytics 
company.  The analysis focuses on 23,789,354 observations referring only to scientific 
articles, conference proceedings, scientific abstracts, and data papers.  Scientific 
articles constitute the bulk of the resulting dataset.   
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Annex 2:  Technological and scientific fields 
 
For the purpose of the analysis, we grouped patents in 13 technological fields.  These 
fields were based on the 35 fields of technology from WIPO’s technology concordance 
table relying on the International Patent Classification (IPC) symbols.13  The criteria to 
group the fields was: (1) to keep the resulting fields of a comparable size; and, (2) to 
group them according to the co-occurrence of WIPO’s categories.  The resulting fields 
range from 4.4% to 13.8% of total and group the 35 WIPO fields as follows: 
 
1. Electronics (6.9%): Electrical machinery, apparatus, energy (1). 
2. Audio-visual (4.4%): Audio-visual technology (2). 
3. ICTs (13.8%): Telecommunications (3); Digital communication (4); Basic 

communication processes (5); Computer technology (6); and, IT methods for 
management (7). 

4. Semiconductors & optics (7.3%): Semiconductors (8); and, Optics (9). 
5. Instruments (10.8%): Measurement (10); Analysis of biological materials (11); 

Control (12); and, Medical technology (13). 
6. Biopharma (7.6%): Organic fine chemistry (14); Biotechnology (15); 

Pharmaceuticals (16); and, Food chemistry (18). 
7. Materials (4.9%): Materials, metallurgy (20); Surface technology, coating (21); and, 

Micro-structural and nano-technology (22). 
8. Chem & environment (4.4%): Chemical engineering (23); and, Environmental 

technology (23). 
9. Chemicals (8.5%): Macromolecular chemistry, polymers (17); Basic materials 

chemistry (19); and, Other special machines (29). 
10. Machines (9.7%): Handling (25); Machine tools (26); and, Textile and paper 

machines (27). 
11. Engines & Transport (12.3%): Engines, pumps, turbines (27); Thermal processes 

and apparatus (30); Mechanical elements (31); and, Transport (32). 
12. Civil engineering (4.5%): Civil engineering (35). 
13. Consumer goods (5.1%): Furniture, games (33); and, Other consumer goods (34). 
 
 
Similar to patents, we also grouped the scientific publications in 12 scientific fields 
based on the subject tags to scientific publications in the Web of Science SCIE data. 
We based these fields in the existing categories by the Observatoire de Sciences et 
Techniques (OST) also with the criterion to group the publications in fields of a 
comparable size. The resulting fields range from 5.6% to 12.9% of total and group the 
35 WIPO fields as follows: 
 
1. Applied Biology (7%): Plant Sciences; Veterinary Sciences; Agriculture; Zoology; 

Transplantation; Biology; Life Sciences & Biomedicine - Other Topics; Ecology; 
Entomology; Fisheries; Forestry; Agriculture, Dairy & Animal Science; Agronomy; 
Agriculture, Multidisciplinary; Mycology; Soil Science; Biodiversity & Conservation; 
Biodiversity Conservation; Horticulture; Agricultural Engineering; Materials Science, 
Textiles; Ornithology; Biochemistry & Molecular Biology. 

2. Biochem & Biotech (9.2%): Biochemistry & Molecular Biology; Cell Biology; 
Biotechnology & Applied Microbiology; Genetics & Heredity; Chemistry. 

3. Chemistry (12.9%): Chemistry; Chemistry, Multidisciplinary; Materials Science, 
Multidisciplinary; Chemistry, Physical; Polymer Science; Chemistry, Analytical; 
Chemistry, Organic; Electrochemistry; Nanoscience & Nanotechnology; 
Crystallography; Chemistry, Inorganic & Nuclear; Chemistry, Applied; Chemistry, 

                                                
13 www.wipo.int/export/sites/www/ipstats/en/statistics/patents/pdf/wipo_ipc_technology.pdf  

http://www.wipo.int/export/sites/www/ipstats/en/statistics/patents/pdf/wipo_ipc_technology.pdf
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Medicinal; Materials Science, Coatings & Films; Materials Science, Ceramics; 
Materials Science, Composites; Materials Science, Characterization & Testing; 
Materials Science, Paper & Wood; Oncology. 

4. Clinical Medicine (12%): Oncology; Radiology, Nuclear Medicine & Medical 
Imaging; Psychiatry; Clinical Neurology; Pediatrics; Medicine, General & Internal; 
Pathology; Dermatology; Toxicology; Health Care Sciences & Services; 
Rheumatology; Critical Care Medicine; Otorhinolaryngology; Allergy; Rehabilitation; 
Emergency Medicine; Tropical Medicine; Andrology; Environmental Sciences & 
Ecology. 

5. Earth Sciences (6%): Environmental Sciences & Ecology; Environmental 
Sciences; Geology; Marine & Freshwater Biology; Water Resources; Meteorology & 
Atmospheric Sciences; Geochemistry & Geophysics; Geosciences, 
Multidisciplinary; Oceanography; Engineering, Environmental; Paleontology; 
Mineralogy; Geography, Physical; Physical Geography; Engineering, Geological; 
Limnology; Engineering. 

6. Engineering (9.3%): Engineering; Energy & Fuels; Metallurgy & Metallurgical 
Engineering; Mechanics; Engineering, Chemical; Instruments & Instrumentation; 
Thermodynamics; Engineering, Mechanical; Engineering, Civil; Construction & 
Building Technology; Engineering, Biomedical; Engineering, Multidisciplinary; 
Engineering, Manufacturing; Engineering, Industrial; Transportation; Engineering, 
Aerospace; Mining & Mineral Processing; Engineering, Petroleum; Transportation 
Science & Technology; Engineering, Ocean; Engineering, Marine; Neurosciences & 
Neurology. 

7. Fundamental Biology (7.4%): Neurosciences & Neurology; Microbiology; 
Biophysics; Physiology; Reproductive Biology; Biochemical Research Methods; 
Virology; Evolutionary Biology; Developmental Biology; Mathematical & 
Computational Biology; Medical Laboratory Technology; Parasitology; Materials 
Science, Biomaterials; Anatomy & Morphology; Neuroimaging; Microscopy; Cell & 
Tissue Engineering; Immunology. 

8. Medical Science (7.7%): Immunology; Gastroenterology & Hepatology; 
Hematology; Respiratory System; Infectious Diseases; Medicine, Research & 
Experimental; Research & Experimental Medicine; Peripheral Vascular Disease; 
Physics. 

9. Physics & Math (9.4%): Physics; Physics, Applied; Optics; Physics, Condensed 
Matter; Physics, Multidisciplinary; Mathematics, Applied; Physics, Atomic, 
Molecular & Chemical; Spectroscopy; Physics, Particles & Fields; Physics, 
Mathematical; Statistics & Probability; Physics, Nuclear; Physics, Fluids & Plasmas; 
Mathematics, Interdisciplinary Applications; Public, Environmental & Occupational 
Health. 

10. Social & Human Sciences (6.3%): Public, Environmental & Occupational Health; 
Psychology; Nutrition & Dietetics; Sport Sciences; Nursing; Behavioral Sciences; 
Geriatrics & Gerontology; Business & Economics; Substance Abuse; Integrative & 
Complementary Medicine; History & Philosophy Of Science; Health Policy & 
Services; Education & Educational Research; Economics; Psychology, 
Experimental; Education, Scientific Disciplines; Anthropology; Audiology & Speech-
Language Pathology; Gerontology; Psychology, Clinical; Psychology, Biological; 
Social Sciences - Other Topics; Primary Health Care; Management; Environmental 
Studies; Psychology, Multidisciplinary; Medical Ethics; Biomedical Social Sciences; 
Social Sciences, Biomedical; Legal Medicine; Medicine, Legal; Social Issues; 
Mathematical Methods In Social Sciences; Social Sciences, Mathematical Methods; 
Psychology, Developmental; Psychology, Applied; Linguistics; Ethics; Hospitality, 
Leisure, Sport & Tourism; Archaeology; Geography; Ergonomics; Agricultural 
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Economics & Policy; Philosophy; Women's Studies; Social Sciences, 
Interdisciplinary; Urban Studies; History; Business; Sociology; Art; Government & 
Law; Law; Music; Psychology, Mathematical; Education, Special; Business, 
Finance; Communication; Family Studies; Social Work; Language & Linguistics; 
Ethnic Studies; Criminology & Penology; Psychology, Educational; Psychology, 
Psychoanalysis; History Of Social Sciences; Planning & Development; Public 
Administration; Religion; Arts & Humanities - Other Topics; Humanities, 
Multidisciplinary; Demography; Psychology, Social; International Relations; 
Industrial Relations & Labor; Literary Theory & Criticism; Literature; Surgery. 

11. Surgery (7.2%): Surgery; Urology & Nephrology; Cardiac & Cardiovascular 
Systems; Obstetrics & Gynecology; Ophthalmology; Orthopedics; Dentistry, Oral 
Surgery & Medicine; Anesthesiology; Science & Technology - Other Topics. 

12. Technology (5.6%): Science & Technology - Other Topics; Telecommunications; 
Nuclear Science & Technology; Automation & Control Systems; Operations 
Research & Management Science; Computer Science, Information Systems; 
Computer Science, Artificial Intelligence; Computer Science, Theory & Methods; 
Computer Science, Interdisciplinary Applications; Acoustics; Computer Science, 
Software Engineering; Imaging Science & Photographic Technology; Remote 
Sensing; Computer Science, Hardware & Architecture; Medical Informatics; 
Information Science & Library Science; Robotics; Green & Sustainable Science & 
Technology; Computer Science, Cybernetics; Logic; Architecture; . 
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Annex 3:  Geolocalization methodology 
 
Patent data  
 
As far as possible, the geocoding – attributing the geographical coordinates to a given 
location – relates to the inventors’ address based on the best available data source 
within a patent family.  The data work relies on the research efforts and generosity 
conducted by many others.  In particular, it relies on geocoded patent data from Yin et 
al.  (2018), Ikeuchi et al.  (2017), Li, et al.  (2014), de Rassenfosse et al (2019), 
Morrison et al.  (2017) and PatentsView (www.patentsview.org, accessed March 2019).  
Many addresses are geocoded at a very precise level – i.e.  street or block – but others 
only at the postal code or other sub-city level.  To remain internationally comparable, 
but also due to the limited coverage of inventors’ addresses in some national 
collections, the clustering analysis (see annex 4) relies only on internationally oriented 
patents.   
 
For patents, 87 percent of the international patent families filed from 1976 to 2015 were 
geocoded.14 Most of the non-geocoded cases had no usable address information.  
As far as possible, the geocoding was applied to the inventors’ addresses by using the 
most complete and reliable data source available within each patent family.  In addition, 
the data were enriched with exiting geocoded patent data (see Yin et al., 2018; Ikeuchi 
et al., 2017; Li, et al., 2014; de Rassenfosse et al, 2019; Morrison et al., 2017).  
All these sources and our own geocoding  using ESRI or Geonames and geocoded 
postal codes official national sources  were analyzed and consolidated to get the best 
possible geocoded data for each patent family.  When there was more than one source 
for a given patent family, the following order of priority was given:  (1) sources having 
information from the inventor (inventor principle); (2) sources having more 
inventors’ addresses covered (coverage principle); (3) sources with the best geocoding 
resolution (resolution principle); (4) sources closest to the address country – 
e.g. entrusting Chinese addresses to CNIPA data, Japanese addresses to JPO data, 
etc. – (local principle); and (5) manually check and ad-hoc selection when two or more 
sources were still available.  As a result, many inventor’s addresses were geocoded at 
a precise level – i.e. street or block – but others only at the postal code or other  
sub-city level.  Patent families containing more offices are more likely to be geocoded 
and at higher quality.  This is another reason why the report relies only on international 
patent families.   
 
 
Scientific publication data  
The report assumes that research conducted for any publication takes place at the 
institutions and organizations to which the authors declare their affiliation.  Virtually all 
of these locations were geocoded at the postal code or sub-city level using Geonames 
and geocoded postal codes official national sources.  In the case of authors with more 
than one affiliation in the same publication, all different addresses are considered.  
97 percent of all the available affiliation addresses were geocoded at the postal code or 
sub-city level. 
 
  

                                                
14 Patents in the entire period 1970-2017 were also geocoded, but the lack of complete 
addresses is more severe before 1976 and after 2015.   

http://www.patentsview.org/
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Annex 4:  Identifying clusters from geo-referenced data 
 
In some countries, the size gap between the different administrative areas is quite 
important.  In the U.S. for example, one jumps from States (whose size is also very 
heterogeneous) down to counties.  This is a well-known issue in spatial analysis, which 
goes under the name of modifiable areal unit problem (MAUP), which produces 
statistical and visual biases when aggregating point-based measures of spatial 
phenomena.  Results and conclusions, both exploratory and confirmatory, can change 
considerably depending on the administrative area chosen as unit of analysis.   
 
A related problem arises when one aims to carry out international comparisons of the 
agglomeration of economic and innovative activities, such as in our case.  The 
administrative areas are country-specific and hardly comparable across countries.  
For example, the Chinese smallest units are counties, which tend to be larger than 
U.S. counties as well as than European NUTS3 regions.  Even within Europe, a 
relatively homogeneous multi-country region, comparisons are difficult.  The average 
size of a U.K. NUTS2 region is 6.581 square km.  This same average jumps to 
24.726 square km for France and 31.157 square km for Spain.   
 
Next, administrative borders do not often coincide with the limit of the agglomerated 
economic activity one aims to measure (Alcácer and Zhao, 2016).  It could be that a 
given economic activity encompasses a territory smaller than a given administrative 
areas, while there is nothing of that activity in the rest of its geographical space.  
It could be that a given administrative area hosts two or more distinct agglomerations, 
which we would not be able to identify if we rely only in administrative units.  It could 
even be sometimes that the relevant agglomeration of economic and innovative 
activities span across county, region, State or even country borders, making the use of 
formal administrative areas misleading.  Confounding different agglomerations within 
the same administrative unit inflicts further damage to the analysis when the two 
agglomerations have distinctive characteristics, such as different specialization 
patterns.  For example, we may confuse two specialized agglomerations, respectively 
specialized in chemicals and electronics; or a classic Marshallian districts, highly 
specialized in a traditional or high-tech sector, with Jacobian cities, whose strength lies 
in its diversification and cross-industry spillovers.  To the extent that we are interested 
in the role played by both types of agglomerations in the internationalization and 
globalization of science and technology, this confusion is highly undesirable. 
 
A vast literature exists, which proposes different solutions to the MAUP, all of which 
consists in identifying agglomerations from georeferenced micro-data (Alcácer and 
Zhao, 2016, 2012; Delgado et al., 2016; Duranton and Overman, 2005; Ellison and 
Glaeser, 1997; Ester et al., 1996; Kerr and Kominers, 2014).  We follow a similar 
approach here.  In particular, we use all foreign-oriented patents from PATSTAT, from 
1976 to 2015 to identify patent agglomerations, and Clarivate’s Web of Science, from 
1998 to 2017, to identify publication agglomerations.   
 
We use DBSCAN (Density-based spatial clustering of applications with noise), an 
organically defined cluster identification approach based on the density-based 
algorithms, well-known in the geography literature (Ester et al., 1996).  In a nutshell, 
DBSCAN is a well-known data clustering algorithm for geo-referenced spatial raw data, 
which is particularly suited for capturing agglomerations with an irregular shape 
(Ester et al., 1996). 
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Density-based spatial clustering of applications with noise  
 
Density-based spatial clustering of applications with noise (in short, DBSCAN) is a well-
known data clustering algorithm that is commonly used to identify clusters from spatial 
raw data.  The algorithm was first proposed by Ester et al. (1996) who demonstrated 
how density-based algorithms are more suitable than partitioning and hierarchical 
methods to capture clusters with an irregular shape.   
 
This feature makes DBSCAN algorithm particularly suited to our purpose, given the 
type of data we use, since we want to be able to identify clusters which may develop 
geographically across countries and very different urban areas, without being limited by 
administrative boarders. 
 
Based on a set of coordinates, DBSCAN groups together points that are close to each 
other based on a distance measure and a minimum number of points.  It also allows 
marking as outliers the points that are in low-density regions and thus are not included 
in any cluster.  Also, this second feature is particularly important in our datasets, 
because we want to allow patenting and publication to still occur outside any cluster. 
 
DBSCAN divides a dataset into subgroups of high density regions.  The two 
parameters required for DBSCAN are epsilon (ε) and minimum amount of points 
required to form a cluster (minPts).  The parameter epsilon defines the radius of 
neighborhood around a point x.  It’s called the ϵ-neighborhood of x.  The parameter 
minPts is the minimum number of neighbors within ε radius.   
 
We can imagine each data point having a circle with radius ε drawn around it.  Using ε 
and minPts, we can classify each data point as: 
 

 Core point:  a point that has at a number of other points greater than or equal to 
minPts within its ε radius; 

 Border point:  a point is within the ε radius of a core point but has less than the 
minimum number of other points (minPts) within its own ε radius; 

 Noise point:  a point that is neither a core point nor a border point. 
 
The figure below shows the different types of points (core, border and outlier points) 
using minPts = 6.  Here x is a core point because neighborsϵ(x)=6, y is a border point 
because neighborsϵ(y)<minPts, but it belongs to the ϵ-neighborhood of the core point x.  
Finally, z is a noise point.  Each core point forms a cluster together with the points that 
are reachable within its ε radius. 
 
Figure A.1.  DBSCAN core points, border points and noise points 

 
 
Source:  Authors based on Ester et al.  (1996) and https://www.datanovia.com/en/lessons/dbscan-density-
based-clustering-essentials/ (accessed November 8, 2019). 

 
 

https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/
https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/
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Choosing DBSCAN parameters 
 
As mentioned above, DBSCAN algorithm requires two input parameters:  epsilon, 
which specifies how close points should be to each other to be considered a part of a 
cluster; and minPts, which specifies how many neighbors a point should have to be a 
core point of a cluster.  The choice of these two parameters is arbitrary and critically 
determines the results of the cluster identification both in terms of size and shape of the 
clusters. 
 
After some visual inspection of the data, and given the less precise geocoding of 
scientific publications (postal code, and not street) we set two different epsilon 
parameters for, respectively, patent and publication data.  For publication data we 
calculated the average commuting distance to work in OECD countries (23 Km) 
(OECD, 2011), while for patent data we relied on a smaller radius, the 13 Km, as in 
Bergquist et al (2017). 
 
To decide minPts, and after we have chosen the value for epsilon, we proceed as 
follows:    
 

 We identify how many points lie within each point’s epsilon-neighborhood.  
In order to do so, we used GIS software to create a buffer zone with epsilon 
radius around each coordinate point (i.e., buffer zones of 23/13 km radius 
around each coordinate point, respectively for scientific publications and 
patents) and counted each point’s neighbors within the buffer – coordinate 
points weighted by the number of actual points in each coordinate. 

 

 Once we have counted the number of neighbors, we run DBSCAN setting the 
minPts parameter at the median of the distribution of the number of neighbors.  
Choosing as threshold the median of the number of neighbors, allows half of 
the points to be considered as core points by the clustering algorithm.   

 
The algorithm is run separately for patents and scientific publications.  In particular, we 
use all foreign-oriented patents from PATSTAT, from 1976 to 2015 to identify patent 
agglomerations, and Clarivate’s Web of Science, from 1998 to 2018, to identify 
publication agglomerations.  After having identified the two types of agglomerations 
separately, we merge them and keep the outer borders in case that some patent and 
publication agglomerations overlap (more details below), identifying separately global 
clusters of patents and global clusters of publications. 
 
Next, we also take care of fine-tuning our algorithm in order to make it suitable to 
identify both specialized and diversified agglomerations of patents and publications.  
The above method is repeated for 25 sub-samples of the publication and patent data 
that do not lie into the above identified clusters, which refer to 12 scientific fields and 
13 technological ones, respectively.15 
 
Figure A.8.  below shows the distribution of the number of neighbors and the median 
value selected as minPts parameter for publication and patent data.16  As can be seen, 

                                                
15 We also calculate minPts at the country level, which allows us to identify country specific innovation 
clusters.  For highly innovative regions (such as the North America, Eastern Asia, Western and Northern 
Europe), the country threshold of minPts will be higher than the global one, thus only the denser areas will 
be identified as clusters, while the opposite is true for less innovative areas. 

 
16 The mean value is showed for comparison purposes, as well as because it is used as minPts 
to determine the clusters in technological fields 5100 and 5200. 
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thresholds are quite different across fields, reflecting the large heterogeneity among 
them.   
 
Based on different ways to choose the parameters necessary to run DBSCAN, we 
have uncovered two types of agglomerations: 
 

1. Global Innovation Hotspots (GIH):  these are agglomerations that emerge from 
DBSCAN when using all the data across fields and technologies pooled 
(separately for publications and foreign-oriented patents).  They are therefore 
large knowledge centers, either in patents or in scientific publications (normally 
in both) 

 
2. Niche Clusters (NC):  these are agglomerations emerging when running 

DBSCAN separately for each technology and field, respectively for patents and 
publications, to the patents and publications that do not belong to GIH.  As the 
parameters chosen to run DBSCAN depend on the total number of 
patents/publications in a given field, with this second method some niche 
clusters that do not qualify to be GIH are identified. 

 
 
Figure A.2.  minPts value for publication and patent data 
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Figure A.3. minPts value for publication data by scientific field 
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Figure A.4.  minPts value for patent data by technological field 
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Delimiting clusters’ borders 
 
We explain in more detail in this section how the different layers (clusters identified 
separately in patents and publications, and across the 25 fields – 12 scientific fields 
and 13 technological ones) that partially or totally overlap are merged, and how the 
borders of our final list of GIH and NC are defined. 
 
First, once each coordinate point is assigned to a cluster-layer, their boundaries are 
defined by means of the convex and concave hull algorithms.  The convex hull in a set 
X of points in the Euclidean space is the smallest convex set that contains all the X 
points.  That is to say, it is a polygon encompassing all the X points, with straight, short 
lines connecting the outer points in space among X.  Any point inside the outer shape 
belongs to the polygon.  The convex hull however does not correctly handle concave 
shapes, and some points may be assigned to belong to a given polygon, while they are 
not.  The concave hull starts from the convex hull, but removes the concave areas that 
do not have any point inside (Moreira and Santos, 2007).  Different ways to remove 
these areas exist.  We make sure to never go beyond cutting more than 25% of the 
original polygon, in order to ensure a meaningful shape of the polygon, especially when 
these are based in relatively few coordinate points. 
 
Figure A.5.  Convex and concave hull 

  
Figure A.11.a.  Convex hull algorithm.  It does not 
represent the area occupied by the set of points. 

Figure A.11.b.  Concave hull. 
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Thus, we compute all concave hulls to establish the boundaries of the polygons that 
encloses all the points belonging to a single-layer cluster.  In most of the cases, as the 
identified clusters have more than two spatial points, the output is a polygon.  However, 
when the cluster encompasses only a single point or a line (two points), a buffer of 
13km is added, in order to transform it into a polygon and facilitate its visualization (this 
only happens around 5 cases between GIH and NC; one critical example being 
Teheran, where all its publications are geo-referenced in the same single coordinate 
point).   
 
Layers identified from the concave hull after using patent and publication pooled data 
are merged to create the final boundaries of the GIH.  In this step we only merge 
polygons from the patent layer (A) with polygons from the scientific publication layer (B) 
and vice versa, as by definition the polygons within each of the previous layer do not 
intersect each other, in order to create a new layer of polygons (C).  In order to make 
this join, we follow four main criteria, as follows: 
 

1. If a polygon (a), such that (a) is contained in A, intersects any polygon (b), such 
that (b) is contained in B, and the intersected area is equal or larger than 5% 
the area of (a), then (a) is joined with (b) and a new polygon (c) is created, such 
that c belongs to the new layer C.  This process is repeated for the polygons (b) 
that were not initially contained in C, when the intersected area with (a) is equal 
or larger than 5% the area of (b).   

2. If a polygon (a) intersects any polygon (b) and the intersected area is less than 
5% the area of (a) or (b), then (a) and (b) are considered as different polygons.  
The intersected area is assigned to the polygon with the larger area, so the 
polygons (a’) and (b’) are created in the layer C. 

3. If a polygon (a) does not intersect any polygon (b), then (a) and (b) are added to 
the layer C. 

4. As a polygon from a layer (a) can intersect more than one polygon from layer 
(b) and vice versa, we repeat the procedure described in steps 1) and 2) using 
a threshold of 20% instead of 5%, for the polygons in layer c that intersects 
other polygons from the same layer. 

 
For the NC, we follow a similar procedure as for GIH, but we first compute the union for 
each type of cluster no matter their field, before creating the final polygons.  More 
specifically, after creating single layers for each of the type-fields (step 1), we create 
layer by type (a layer enclosing the 13 patent-field layers and another enclosing all the 
12 scientific publication layers), applying the same four criteria iteratively.  In other 
words, for each type of layer (patent or scientific publications) we begin merging two 
field-layers (i.e.  the first two categories of the fields) and then we add to this output 
each of the remaining individual field-layers sequentially.  It should be noticed that the 
polygons of the specialized clusters do not intersect the polygons of the hotspots, as 
for identifying specialized clusters we only consider the geographical points that are 
outside the hotspots’ boundaries. 
 
By definition, the resulting areas:  (1) are internationally comparable, i.e.  the same 
scientific publication or patent (specialized) density would have determined the same 
hotspot (cluster) anywhere in the world; (2) can have different scientific and 
technological density, i.e.  hotspots and niche clusters need only scientific publication 
or patent high concentration, but not necessary both; (3) have different specialization 
density, i.e.  niche clusters are defined with lower density thresholds than hotspots; (4) 
are distinct geographical areas, i.e.  the polygons are non-overlapping within and 
across hotspots and niche clusters; and, (5) have non-predefined boundaries, i.e.  
hotspots and niche clusters can have different sizes and include more than one city, 
state/province or country. 
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