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Abstract

In this paper we exploit a unique and rich dataset of patent applications and scientific
publications in order to answer several questions concerned with two current phenomena on
the way knowledge is produced and shared worldwide: its geographical spread at the
international level and its spatial concentration in few worldwide geographical hotspots. We
find that the production of patents and scientific publications has spread geographically to
several countries, and has not kept within the traditional knowledge producing economies
(Western Europe, Japan and the U.S.). We observe that part of this partial geographical
spread of knowledge activities is due to the setting up of Global Innovation Networks, first
toward more traditional innovative countries, and then towards emerging economies too.
Yet, despite the increasing worldwide spread of knowledge production, we do not see the
same spreading process within countries, and even we see some increased concentration in
some of them. This may have, of course, important distributional consequences within
countries. Moreover, these selected areas also concentrate a large and increasing
connectivity, within their own country to other hotspots, and across countries through Global
Innovation Networks.
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1. Introduction

Throughout the 20" century, the production of scientific and technical knowledge was largely
confined to a few countries, and especially within the so-called Triad (Japan, Western
Europe, and the US), for two main reasons. First, it was these countries that hosted the
largest universities, public research organizations and R&D-intensive companies, with the
latter having a preference for keeping their research operations close to their headquarters
(Castellacci and Archibugi, 2008; Chaminade et al., 2016; Patel and Pavitt, 1991). Second,
the Triad also hosted most of the foreign-based R&D operations of multinational companies
(MNCs), while the branches or controlled firms in the developing economies were mostly
trusted with unsophisticated tasks such as the adaptation of products and processes to local
market conditions (Krishna et al., 2012). This resulted in very limited foreign patenting
activity, especially outside the Triad, in stark contrast with the increasingly global outsourcing
of manufacturing (Gerybadze and Merk, 2014).

Starting in the 1990s, two changes occurred. First, some emerging economies, most
notably in East Asia but also elsewhere, began gaining importance as knowledge originators
(Branstetter et al., 2014). Second, foreign direct investments (FDIs) became increasingly
dictated by knowledge-seeking strategies, with international R&D operations aiming at
getting access to foreign knowledge (Amendolagine et al., 2019; Reddy, 1997). Return and
circular high-skilled migrants reinforced this phenomenon (Saxenian, 2006), with
international social networks helping to direct investments to the migrants’ countries of origin
(Foley and Kerr, 2013; Useche et al., 2019).

Large emerging economies such as those of China and India host nowadays not only the
R&D operations of foreign MNCs, but also several important domestic actors. It is not yet
clear, however, whether they can be ranked among the new global science and technology
powers, or are still confined to subordinate positions in the international division of research
and inventive labor (Awate et al., 2012; Branstetter et al., 2014).

Answering this question, however, requires scratching behind the surface of international
statistics and country-level data. Knowledge-seeking FDIs do not target countries as a
whole, but specific locations therein. Knowledge production, in fact, is dominated by
economies of agglomeration, which results in its concentration in selected cities and regions
(Feldman, 1994). At the same time, important locations are neither self-sufficient nor they
can rely exclusively on knowledge inputs coming either from their countries’ national science
and innovation system or from large MNCs. Rather, they are expected to take part in a
network of international collaborations, investments or personal mobility, which allow them to
exchange knowledge with other locations worldwide (Bathelt et al., 2004; Lorenzon and
Mudambi, 2013; Moreno and Miguelez, 2012).

In view of these considerations, it is important to examine the emergence of a global science
and innovation system from a local perspective.

First, one needs to map the knowledge production centers that, from within each country,
contribute to the increasing dispersal of innovative activities worldwide and the increase or
reversal of international knowledge exchanges.

Second, in particular, when examining emerging countries, one also wishes to investigate
whether the strengthening of their knowledge production centers goes along with an
intensification of international collaboration and investments, or instead it occurs at the
expense of their participation to innovative activities in the rest of world.



In what follows we produce both country- and local-level evidence. First, we investigate the
extent at which the globalization of knowledge production has progressed, due both to the
emergence of new countries outside the Triad and an increase of cross-country exchanges
(sections 2 and 3). Second, we detect the cities and/or large metropolitan areas which stand
behind the production of knowledge at the country level and examine the extent of their
mutual, global connections (section 4). Section 5 concludes.

2. The internationalization of knowledge production

In the following paragraphs we exploit patent and publication data at the country level to
assess the extent at which the production of knowledge and innovation has internationalized,
and to identify the key actors behind the observed trends. When necessary, we compare
the patent- and publication-based indicators with analogous indicators based on R&D or
trade, among others.

As explained in detail in the annex, our patent data cover all the worldwide patent families,
from 1976 to 2017. Roughly speaking, a (simple) patent family is the set of patent
applications on the same invention filed in different countries’ patent offices. The base unit
of our analysis is the first filing for a set of patent applications filed in one or more countries
and claiming the same invention. Each set containing one first and, potentially, several
subsequent filings is defined as a patent family. By considering families, instead of
individual patents, we avoid counting the same invention more than once. We assume that
the inventive activity behind such patents take place in the countries of residence of the
inventors, according to the latter’'s addresses as reported on the patent documents
(occasional deviations from this assumption will be stated explicitly) (Webb et al., 2005).

We pay special attention to internationally oriented (or foreign-oriented). Foreign-oriented
patent families concern those inventions for which the applicant has sought for patent
protection beyond its home patent office. This definition includes also patent applications by
applicants filing only abroad, filing only through the PCT system or filing only at the EPO.
Reciprocally, domestic-only patent families refer to those patent applications filed only at the
applicant’'s home office — regardless of how many filings in the home office there are within
the same family — without any subsequent foreign filing though the Paris or PCT routes.
Likewise, patent applications with applicants of more than one origin are, by our definition,
foreign-oriented patent families. In addition, about 30 percent of the patent families relate
only to utility model protection, which are mostly domestic only. Unless otherwise stated, we
use international patent families as the unit of analysis for all patent statistics reported. This
relates mostly to the incomplete coverage of the domestic-only patents (and utility models) of
many national collections in PATSTAT. While the top national and international offices are
usually well covered — namely USPTO, JPO, KIPO, CNIPA, EPO and WIPO — some other
offices have limited coverage in PATSTAT. For instance, the coverage in PATSTAT of
national collection data from some top 20 patent offices — such as India, Indonesia, Iran
(Islamic Republic of), Mexico and Turkey — is limited. In addition, due to more limited
information, we are less likely to geocode domestic only patent families and, even if so, we
often do it at a lessen quality or precision. This is another reason why we rely mostly on
international patent families. Occasionally, and if explicitly stated, we will produce some
statistics based on the remaining patent families, which consist of domestic firms’ single
patent applications to their national patent office.



As for publication data, we rely on Clarivate’s Web of Science, from 1998 to 2017. In this
case, we assume the research conducting to the publication to take place in the countries of
the institutions and organizations to which the authors declare their affiliation. We have used
all the collection (all fields) from 1998 onwards, but only worked with articles in scientific
journals, and excluded proceedings, books, etc.

We first examine the international concentration of both patents and publications. In order to
do so, we adapt the Herfindahl-Hirschman (HH) index to our needs, as follows:

HH = ) s? 1)

-

=1

where N is the number of countries in our database and s; is each country’s share of the
activity of interest (research, invention or others). The HH Index ranges from 1/N to 1, where
values equal or above 0.25 can be reinterpreted as if there are only four or less countries
responsible for the indicator described and, hence, indicative of high concentration. Notice
that by taking the reciprocal of the HH index (that is: 1-HH) we obtain a measure of
international dispersion.

Figure 1 reports the yearly HH index for 195 countries, for several indicators: total exports,
inward foreign direct investments (FDI), R&D (as measured by either the expenditures or
staff employed, in full time equivalent), internationally oriented patents, and scientific
publications (plus total population, as benchmark).!

Two stylized facts stand out. First, knowledge-related and innovation activities, such as
R&D expenditures, patents, and publications, are way more concentrated than population,
trade and FDI. But, second, the concentration of such activities declines over time as much
as, if not more, than that of trade and FDI.

Two further stylized facts emerge from Figure 1, which are worth stressing. First, R&D
expenditures are more concentrated than R&D personnel. This implies that while we can
find R&D employees everywhere across the world, their budgets differ widely. Their outputs
differ too, with both patents and publications also being more concentrated than R&D
personnel. This implies that researchers’ and inventors’ productivity, as measured by the
number of patents and publications per person, differs widely by country.

Second, we observe a slight change in trend for R&D expenditures and patents after 2008,
at the onset of the Great Recession. Whether this is a temporary, business-cycle-related
occurrence, or the beginning of an inversion of long-term globalization trends is still an open
guestion.

1 We considered the countries with missing data as having 0% of the global share. This has the
potential of overestimating concentration if one or more large economies are missing. After inspection
of our data, we did not find any large or medium size country being unreported.



Figure 1: HH index for patents, publications and other variables
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Source: Authors based on PATSTAT, PCT and Web of Science data. R&D and R&D personal are retrieved
from the UNESCO Institute for Statistics, while trade and FDI data from the World Development Indicators, the
World Bank.

So far, we have limited ourselves to counting patents and publications, and ignored that their
scientific or technological importance (impact on subsequent research) can vary widely.

We can measure such importance with the number of citations both patents and publications
receive, respectively from other patents and from other publications (forward citations; Jaffe
and de Rassenfosse, 2017). In the case of patents, some correlation also exists between
forward citations and economic value (Jaffe and de Rassenfosse, 2017).

We ask whether the decreasing concentration described so far concerns also the most
important and/or valuable items (patents and publications), namely those that received the
most citations over 5 years after the date of, respectively, first filing at a patent office or
appearance in ajournal. To this end, Figure 2 compares the HH indexes calculated for
either the top-10% or top 5% most cited items with the general HH index (as calculated on
all items, irrespective of the citations received). We first observe that the concentration of
both highly-cited patents and highly-cited publications is higher than that of the general
concentration, which implies that the higher the importance or value of knowledge, the more
concentrated its production. At the same time, though, the concentration of highly-cited
items declines, over time, faster than the general concentration, towards which it converges.
This implies that emerging countries do not only produce more and more knowledge, but
also knowledge that is highly valuable and important.

The main exceptions to this trend concern patent production in the 1980s (a period we
cannot cover for publication) and after the Great Recession of 2008, when concentration
increases. Part of the explanation of the latter period increase is the extraordinary
appearance in the last decade of Eastern Asian economies, particularly Republic of Korea
and China, as main hubs of patent production, which we will discuss in the next section.
However, other factors may also be at play. We look at this in the following paragraphs.



Figure 2: HH index, by forward citations received
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We hypothesize that the patterns found in figures 1 and 2 may be due to a succession of
cycles marked by the appearance and rapid development of certain breakthrough
technologies, followed by diffusion. At the beginning of each cycle (in the 1970s and the
2010s), highly-cited patents concentrate in leading countries, while during the diffusion phases
inventive activities spread out (on this hypothesis, see Crescenzi et al., 2019).

Figure 3 looks at patents and splits them either into high versus non-high technologies

(left panel) or into low- and high-complex technologies (right panel), based on their IPC
classification (where IPC stands for International Patent Classification) (to identify high-
complexity patents, we follow Fleming and Sorenson, 2004, and Sorenson et al., 2006).
Intuitively, the high versus non-high distinction (as defined by Eurostat?) attains to the maturity
reached by the technology with, say, nanotechnology standing higher than textile. As for
discrete versus complex technologies, it attains at whether a new product or process can be
protected, respectively, by a single or a handful of patents (as it is the case with new chemical
formulas for drugs or materials) or by a large number of patents combined which result from
the combination of many new features, each protected by a patent (as it is the case with, say,
smartphones or means of transport).

Patents in high and complex technologies show a similar pattern: they are systematically
more concentrated than the others, their concentration increases during the 1980s (after an
initial decline in the 1975s), declines later on and picks up again in the 2010s. However, the
1980s-2000s pattern is more extreme for patents in complex technologies. This lends some
support to the hypothesis that the most disruptive and breakthrough innovation activities first
determined a concentration increase in high-income countries, with low-and middle-income
countries following only later on (D’Agostino and Santangelo, 2012; Crescenzi et al., 2019).
As for the increase of concentration in the 2010s, this is most visible for high-complex
technologies.

2 http://ec.europa.eu/eurostat/cache/metadata/Annexes/pat_esms_an2.pdf
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Figure 3: HH index patents, by type
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Figure 4: HH index, by fields
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Source: Authors based on PATSTAT, PCT and Web of Science data. Note: The humanities field has been
excluded from panel b. Early on, WoS did not include many Humanities journals and those few were in English
from the U.S. and UK. The number of journals has increased over time and, in the Humanities (where English
does not rule as in other disciplines), this means having included non-English speaking journals, where
publications form non-Anglophone countries are most numerous. To put it differently, the high level and dramatic
converge you see witness of the changing composition of WoS for Humanities, rather than any real pattern.

We further explore this issue in Figure 4, where we split patents by specific technologies and
by scientific field.® Left panel shows that the patterns observed for high technologies is mostly
driven by Semiconductors and Optics, AudioVisuals, and, to a lesser extent, by Information
and Communication technologies (ICTs). Conversely, the increase of concentration in the
2010s seems largely dominated by BioPharma technologies and, to a lesser extent, by Civil
Engineering and Consumer Goods. Right panel repeats the analysis for scientific fields (which
start only in 1998). All the fields show a steady decrease of the HH index. However, there are

3 For details on the grouping of patents and publications into broad fields, see annex 2.



still large heterogeneity across fields, especially during the first part of the period analyzed.
In addition, some fields, such as Applied Biology, Chemistry, and Engineering, show a slight
upturn at the very end of the period, which is possibly in accordance with what we found for
patents in related technologies.

Overall, we can conclude that the geographical dispersion of knowledge production has
increased for the most part of our observation period, but also that the general trend hides
important differences across technologies and level of importance of patents, as well as
scientific fields (albeit less so).

While aggregate concentration figures clearly suggest that the production of scientific and
technological knowledge has increasingly dispersed across countries, they beg the
guestions of which countries contributed the most to this trend.

Figure 5 shows that, from 1970 to around 2000, only three countries — namely the United
States of America (U.S.), Japan and Germany — accounted for two thirds of all patenting
activity worldwide. Adding the remaining Western European economies — in particular the
United Kingdom (U.K.), France, Switzerland and Italy — takes the figure to around 90%.

Starting in the 2000s, the rest of the world — a heterogeneous group that ranges from some
high-income countries, such as Canada or the Republic of Korea, to mostly middle- and low-
income economies — has outpaced in its share of knowledge production not only Western
Europe but also the U.S. and Japan. China and the Republic of Korea are the two countries
with the most impressive record, but they do not explain entirely the observed trend. Even
after adding their shares to those of the Triad, the remaining countries in the rest of the world
increase their share of patents from less than 6% at the beginning of the 1970s to around
13% during the 2000s. The share arrives to around one third if we add China and the
Republic of Korea to the figures of the rest of the world.

In the last two decades, scientific publications have spread even more widely, with the rest
of the world (including China and R. Korea) moving from less than a quarter of all scientific
publication to around 40% at the end of the period. Again, this change is largely due to
China and South Korea, but the growth is visible even without taking them into account.

Table 1 suggests that the most dynamic newcomer countries besides China and R. Korea
are mostly found in Asia, whether in its West (Turkey, Israel), South-East (India, Singapore)
and Centre (Iran). African countries stand out for their absence (with their main knowledge
producing countries, Egypt and South Africa, contributing very little to both worldwide
patenting and publishing). In Latin America, only Brazil is a meaningful player and one
which exhibits some growth. Oceania — mostly pushed by Australia — has seen a small but
steady increase in scientific publication shares, while patent shares have decreased since
the early 2000s.



Figure 5: Evolution of patenting and publication share by top economies
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4 Western Europe includes the 15 economies that were members of the EU prior to May 1, 2004,
along with Andorra, Iceland, Liechtenstein, Malta, Monaco, Norway, San Marino and Switzerland.
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Table 1: Evolution of patenting and scientific publishing, by regions and selected

countries
Patents Publications
Region (country)  1970-1979 1980-1989 1990-1999 2000-2004 2005-2009 2010-2014 2015-2017 2000-2004 2005-2009 2010-2014 2015-2017
SCSE Asia 0.1% 0.1% 0.6% 1.0% 1.6% 2.1% 2.0% 3.2% 4.8% 6.7% 7.5%
India 0.0% 0.0% 0.1% 0.5% 1.0% 1.4% 1.3% 2.0% 2.6% 3.2% 3.5%
Singapore 0.0% 0.0% 0.1% 0.3% 0.4% 0.4% 0.3% 0.4% 0.5% 0.5% 0.5%
CEE 3.2% 3.8% 4.9% 1.1% 1.3% 1.4% 1.3% 5.8% 5.9% 5.8% 5.6%
Russian Federation ~ 0.7% 1.4% 2.7% 0.4% 0.5% 0.5% 0.4% 2.4% 1.9% 1.7% 1.8%
Poland 0.2% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 1.1% 1.3% 1.3% 1.3%
LAC 0.3% 0.3% 0.3% 0.4% 0.5% 0.6% 0.6% 3.0% 3.5% 4.0% 4.0%
Brazil 0.1% 0.1% 0.1% 0.2% 0.2% 0.3% 0.3% 1.5% 2.0% 2.3% 2.3%
Western Asia 0.3% 0.3% 0.7% 1.1% 1.4% 1.6% 1.7% 2.3% 2.8% 3.0% 3.1%
Turkey 0.0% 0.0% 0.0% 0.1% 0.2% 0.3% 0.4% 1.0% 1.5% 1.7% 1.7%
Israel 0.2% 0.3% 0.6% 0.9% 1.2% 1.1% 1.1% 0.9% 0.8% 0.6% 0.6%
Oceania 0.8% 1.1% 1.1% 1.4% 1.3% 0.9% 0.9% 2.4% 2.4% 2.6% 2.8%
Australia 0.7% 1.0% 1.0% 1.2% 1.1% 0.8% 0.8% 2.0% 2.1% 2.3% 2.5%
Africa 0.3% 0.2% 0.2% 0.3% 0.2% 0.2% 0.2% 1.1% 1.3% 1.6% 1.8%
Egypt 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.3% 0.4% 0.5%
South Africa 0.2% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.3% 0.4% 0.4% 0.4%
Total 4.8% 5.8% 7.8% 5.3% 6.4% 6.8% 6.7% 17.8%  20.7%  23.6% 24.9%

Source: Authors based on PATSTAT, PCT and Web of Science data. Notes: CEE = Central and Eastern
Europe; LAC = Latin America and the Caribbean; SCSE Asia = Southern, Central and South-eastern Asia.’

Figures for highly-cited patents and scientific publications exhibit a similar geographical
pattern as that for all items, but with a greater and more resilient concentration in the U.S.,
and a more rapid declines of European and Japanese shares (Figure 6). China stands out
for its particularly rapid ascent, compared to other countries in the rest of the world.

Summing up, knowledge production has increased in volume and spread more globally, but
there is still a limited set of countries that produce the bulk of it, especially when it comes to
highest quality outputs.

We now move on to enquire on whether, at least for the countries involved, the
internationalization process has also translated into a globalization one, that is in a tighter
integration of the established and emergent knowledge producers.

5 These regions are closely based on the geographic regions from the U.N. Statistics Divisions (UNSD)
methodology (https://unstats.un.org, accessed March 2019). The only differences are that CEE includes all
countries in the UNSD’s Northern and Southern Europe categories not included in Western Europe and that SCE
includes Mongolia.
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3. International knowledge production: how much is it global, too?

When it comes to examining the cross-country integration of knowledge production, it is
useful to refer to the concept of Global Innovation Networks (GINs).® A GIN can be defined
as a globally organized web of collaborative interactions between organizations (whether
firms, universities, international agencies or others), engaged in knowledge production and
with a relevant innovation outcome. GINs result from the knowledge-seeking strategy
pursued by such organizations, and cannot be reduced to a side effect of market penetration

and production outsourcing strategies of MNCs (Castellani et al., 2006; Castellani and
Zanfei, 2007).

GINs are kept together by both organization-based linkages (Bathelt et al., 2004; Dunning,
1998) and personal relationships (Lorenzen and Mudambi, 2013), including those resulting
from the international mobility of scientists, innovators and entrepreneurs (Breschi et al.,
2017; Franzoni et al., 2012; Saxenian, 2006, 2002).

It is important to underline that these increasingly interconnected GINs are happening in the
context of an overall increase of collaboration in the production of scientific and technological
knowledge. Already in 1998, teams produced the majority of scientific papers. By 2017,
lone wolf scientists had become half as important as they were 20 years before. The size of
the teams is also increasing. In 2017, the average scientific paper required almost two more
researchers — on average — than 20 years previously (Figure 7). Moreover, the average
team size has shifted upward across the board, making teams of six or more scientists the
most common in the production of scientific knowledge. Teams collaborating to achieve
technological innovations (patents) are smaller but follow a similar increasing trend, with the
average team number doubling since the early 1970s. By the mid-2010s, two thirds of
inventions were collaborative efforts. All team sizes of inventors are increasing at the
expense of single-inventor patents.

6 See Chaminade et al. (2016).
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Figure 7: Inventor and scientific team size, by period
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We now examine the importance, geographical distribution, and evolution over time of
international patent and publication teams. We geo-localize inventors on the basis of their
address, while for authors we consider their affiliation, which we also geo-localize. We
consider a team to be international whenever it includes inventors or authors from different
countries.’

Figure 8 summarizes the main trends, starting in the 1970s for patents and in 1998 for
publications. The most striking pattern concerns publications, whose share of internationally
co-authored ones has grown from 17% to 25% in less than 20 years.

International co-inventorship is a much less frequent phenomenon, which never went
beyond 11% of total patents. Yet, it also exhibits an impressive growth up until the second
half of the 2000s, during which it more than doubles. After the Great Recession, the share
has become slightly negative. The fact that international teams account for a higher
percentage of published scientific articles than of patents indicates that science production is
more internationalized than technology production.

We explored if the cooldown of co-inventorship is only an artifact due to computing the share
— that is, international co-inventorships still growing, but national teams growing faster.

In unreported results, we see that both overall co-inventorships and international
co-inventorships have been increasing at a strong pace for most of the past 40 year.
However, the number of international co-inventions has a notable slowdown from 2010
onwards, while the total number of co-inventions keeps rising.

7 In scientific publication there are instances of double affiliation of authors. Unfortunately, one cannot uniquely
identify affiliations and authors,
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Figure 8: International co-inventorship and co-publishing by country, percent
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patents with more than one inventor located in at least two countries; int. co-publications = share of scientific
articles with more than one affiliation located in at least two countries.

Figure 9: International co-inventorship and co-publication, by country
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The left panel of Figure 9 breaks down international patent data by country of the patent
applicant, for the top patenting countries worldwide. With the exception of Japan and, to a
lesser extent, the Republic of Korea, most top-filing countries show a large international
co-inventorship share. The U.S. and Western European countries show a rising trend.
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Smaller economies with internationally linked and dense urban and innovation areas — such
as Switzerland — are very prone to engage in international collaborations. India also shows
a high rate of international co-inventorship. In East Asia’s top economies things are
different. Up to the mid-1990s, the share of international co-inventorship in China was
extraordinarily large, but the volume was small. Thereafter, when the volume of Chinese
patenting picked up, the share of international co-inventorship dropped dramatically,
although it remained larger than the very low shares of Japan and the Republic of Korea.

Overall, these trends suggest that the globalization of inventive activities mostly concerned
the U.S. and Western Europe along with China and India, with China getting less and less
self-reliant as it developed its own innovation system (Chaminade et al., 2016; Plechero and
Chaminade, 2010). China’s dynamics may be in part responsible for the downturn of
international co-inventorship after the Great Recession. However, we notice that other big
economies, most notably the US, also reduce their share of international co-inventorship
after 2010 (France even before that). In their case, it is less likely that this is due to a
composition effect, as their national innovation systems were well formed in 2010.

A quick look at country trends for international publication team trends reveals a starkly
different picture (right panel of Figure 9). Here globalization touches all countries and
increase relentlessly. Once again, globalization of science and technology follow different
paths.

Figure 10: Co-patenting/co-publishing across country groups
(G4 vs Rest of the World)
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In Figure 10, we split the patents and publications by international teams in three groups,
namely those whose teams include only inventors or authors from within the U.S., Japan,
Canada and Western Europe (as defined above) (G4), inventors or authors from only the
rest of the world (RoW), and inventors or authors from both G4 and the rest of the world
(RoW) — with a dashed line indicating intra Germany-Japan-US ties.
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Figure 11: Concentration and spread of global interactions
International co-inventorship by country pairs International co-publications by country pairs

1998-2002 1998-2002

2011-2015 2011-2015

Source: Authors based on PATSTAT, PCT and Web of Science data. Notes: patents (publications) with more than one inventor (scientists) located in at least two countries. Only top 10%
international corridors of each period reported. Bubbles report the share of links only for selected countries and regions.
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When examining patents, we notice that, at the beginning of the period analyzed

(the 1970s), the G4 countries host the large majority of international teams, almost 80%,
followed suit by the combination G4-RoW. But the two groups follow different trends, and
G4-RoW collaborations almost catch up with intra-G4 ones by the turn of the century.
Teams spanning across countries within the rest of the world remain marginal throughout
the period.

Patterns and trends of scientific publications are, once again, rather different. First, the
share of intra-G4 international publication teams is way less preponderant and decreases
faster than for patents, starting at around 53% in 1998, down to around 32% by the end of
the period. The share of teams combining G4 authors and authors from the rest of the
world, conversely, increases faster and comes to control over 55% of internationally
authored publications. More strikingly, the share of teams comprising authors from the rest
of world only follows clearly an upward trend, but remains small compared to the two other.

Figure 11 shows the top-10% largest collaboration corridors, for patents and publications,
and for two time-windows. Although concentration of collaborations is decreasing as new
stakeholders enter the various collaboration networks, it is only a few countries besides the
G4 that explain the trend. “New” entrants such as China, India or Brazil — also mostly link
with these economies — take the lion’s share, typically with the U.S. and a few Western
European countries, such as U.K. and Germany.

As for collaborations not involving any G4 country, the main players are China, India,
Singapore and, to a lesser extent, Australia, Brazil, Argentina, Mexico and South Africa — all
of which have increased their participation in the subnetwork, although mostly for scientific
co-publication. But their connections still mostly involve one of the big three — particularly
the U.S. and Europe — rather than another non-core location.

Overall, the scientific and technological international collaboration trends suggest that the
globalization of inventive activities mostly concerned the U.S. and Western Europe along
with China and India.

4. Local analysis: Who belongs to the Global Innovation Network?
4.1 City hubs versus niche clusters

Clusters are the archetypical form of agglomeration/concentration of any type of economic
activity, including knowledge production. As defined by Porter (2000), clusters are
“geographic concentrations of interconnected companies, specialized suppliers, service
providers, firms in related industries, and associated institutions (e.g., universities, standards
agencies, trade associations) in a particular field that compete but also cooperate” (Porter,
2000, p. 16).

The intellectual origins of the cluster idea go back as long as Alfred Marshall’s contributions
on why industries agglomerate. He defined what went on to be known as Marhsallian
districts as an “industry concentrated in certain localities” (Marshall, 1920, p. 268), which he
could clearly observe in places like Birmingham, Bedfordshire, Buckinghamshire,
Manchester or Sheffield during the second half of the XIX century.
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Figure 12: Sticky knowledge in space
Patents per small administrative area
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Source: Authors based on PATSTAT, PCT and Web of Science data.
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While Marshallian districts still play a key role in many national economies, they may miss the
inter-industry connections that characterizes and make successful more diversified clusters
(Porter, 2000, p. 21), such as those hosted by large cities and metropolitan areas (Glaeser et
al., 1992). The compact nature of cities facilitates sharing and communication, leading to
increasing returns of agglomeration economies (Lucas Jr, 1993). In fact, as Jacobs (1969)
already noticed, innovation is mostly an urban phenomenon. Jacobs (1969) stressed that,
while Marshallian externalities in clusters/industrial districts are mostly intra-industry, the
crucial type of spillovers are across industries, allowing cross-fertilization of ideas.

Innovation-based clusters are only a particular case of business clusters, in where the rate of
innovation, and innovation of high added value, moves extraordinarily fast. The key element
was, once again, the speed by which knowledge and information spread to firms located in the
cluster, much faster than firms located outside, and this happened much faster in Silicon
Valley compared to Boston. Engel and del-Palacio (2009) and Engel (2015) summarized the
concept of clusters of innovation as “global economic hotspots where new technologies
germinate at an astounding rate and where pools of capital, expertise, and talent foster the
development of new industries and new ways of doing business” (Engel, 2015, p.36).

In this section, we explore how various types of agglomerations of inventors and/or scientists
have prospered or declined along with the internationalization of science and technology.

In the following one we examine to what extent they are connected and patrticipate to the
Global Innovation Network.

Figure 12 shows a preliminary view of the distribution of patents and publications, for two
different time windows, on a spiky map. Patents and publications are grouped across the
smallest available administrative areas within each country, as provided by GADM maps
(https://gadm.org). By comparing the two time periods within each figure, we get an
immediate sense of both the uneven distribution of inventive and scientific activities within
each country, as well as of the emergence of new locations in the 2000s. At the same time,
we cannot detect any clear substitution pattern: not only the emerging locations do not
displace the incumbent ones, but most of the latter exhibit a marked increase in the number of
patents or publications they produce. This holds both at the international level and, at first
sight, at the national level.

The administrative units in Figure 12, however, do not distinguish between types of
agglomeration. Nor they are entirely comparable across countries, at least for two reasons.
First, some agglomeration may encompass more than one administrative unit, or sit across
them. Second, the spatial and population size of administrative units vary across countries
(see Annex 4 for details). For example, the Chinese counties (the smallest units in the country
administrative system) are bigger than both U.S. counties and European NUTS3 regions. And
even within each country, administrative units’ size can vary considerably, for historic reasons.

For these reasons, we both geolocalize with high precision (exact latitude and longitude) all
patents and publications in our dataset, and apply a DBSCAN clustering algorithm to identify a
multitude of agglomerations worldwide (Ester et al., 1996). In a nutshell, the algorithm
consists on inspecting a small area around each patent or publication (a polygon), searching
for other patents or publications therein, and then aggregate all significantly overlapping
polygons, irrespective of the administrative units into which they fall (more details in Annex 4).
We obtain two types of agglomerations, which we identify by running our DBSCAN algorithm:

1. Global Innovation Hotspots (GIH), which we obtain by considering at once all
scientific fields for publications or technological fields for patents. They are large
knowledge production centers, capturing the most innovation-dense geographical
areas of the world in terms of scientific articles or patent families per square
kilometer (km). By definition, these areas are internationally comparable and

19


https://gadm.org/

20

geographically distinct. The same scientific publication or patent density determines
the same hotspot anywhere in the world, although the threshold is different for
scientific publication and patent data. No patent or scientific publication address can
be in two hotspots at the same time.

2. Niche Clusters (NC): which we obtain, after identifying the GIHs, by considering all
patents and publications not yet assigned to any of them, and treat them separately
by technology and field. We created them in order to avoid biases arising from some
scientific or technological fields being overrepresented in the scientific publication
and patent data, respectively. The NCs capture areas with high innovation density in
one or more specific scientific publication or patenting fields, and that otherwise have
not met the criteria to be a GIH. The resulting clusters are also distinct geographical
areas, as the overlapping clusters for different fields are consolidated into one
cluster. But they are only internationally comparable within their specific scientific or
technological field (or fields).

Different calibrations of the DBSCAN algorithms produce different numbers of GIHs and
NCs. With our preferred calibration, we obtain 174 of the former and 313 of the latter.

Despite being measured independently from administrative units, most GIHs and NCs fall
within the largest and/or most prosperous urban areas of the world. However, innovation is
more concentrated than both general economic activity and population. Figure 13 places a
large number of GIHs (orange) and NCs (blue) on the maps of selected continents or
subcontinents, with night light as background so to compare their presence with actual
economic activity. Innovation follows a similar pattern of economic agglomeration, but it
does not overlap entirely with it — witness the several bright spots that do not take any
orange or blue color.

Only 30 hotspots in 16 different countries are responsible for the creation of almost 70% of
the patents and around 50% of the scientific publications produced. More generally, very
little inventive and scientific activity is produced outside the GIHs and NCs we identify, and
even less outside the few countries hosting them. Indeed, there are more than 160
countries not hosting any hotspot or niche cluster. The skewness exists also in these less
innovation dense areas, as most of the knowledge is produced in few urban dense areas.
Just 30 agglomerations located in only 24 different countries produce around 64% of patents
and 61% of scientific publication outcomes within these non-innovation dense countries
(Table 2). Despite the concentration in these few agglomerations, the gap with the top
hotspots is huge. The volume of patents and scientific publication of the top 30
agglomerations is only 0.4% and 4% of those of the top 30 hotspots, respectively.
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Figure 13: Global Innovation hotspots and specialized niche clusters, by region
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Source: Authors based on PATSTAT, PCT and Web of Science data. Notes: Night light data from the U.S. National Oceanic and Atmospheric Administration’s (NOAA)
National Geophysical Data Center.




Table 2: Concentration of patenting and publishing among GIH and NC, and

among less innovation dense countries, 1998-2017

Top 30 hotspots (as share of all GIHs in the world)

Hotspots (%) 30 (17.2%)
Countries (%) 16 (47.1%)
Patents (%) 3,234,850  (69.2%)
Scientific articles (%) 10,987,971  (47.8%)

Top 30 agglomerations in non-innovation dense countries

Agglomerations (%) 30 (5.0%)
Countries (%) 24 (14.4%)
Patents (%) 11,491 (64.1%)
Scientific articles (%) 484,689  (61.0%)

Source: Authors based on PATSTAT, PCT and Web of Science data. Notes: Only data from 1998 to
2017 reported. Top 30 is calculated separately for patent and publication data. Top 30 agglomerations in
non-innovation dense countries are based on the same methodology described for GIHs (annex 4).

Table 3: Largest GIH and NC, by number of patents

GIH NC GIH NC
Name 199195 Name 199195 Name 2011115 Name 2011115
Tokyo 105393  Friedrichshafen 1433 Tokyo 234232  Suzhou 3182
Osaka 38165 Bern 1284 Seoul 87494 Friedrichshafen 2981
Nagoya 14523 Wiurzburg 1181 Osaka 78153 Cheonan 2800
Frankfurt 14300 Okayama 1024 Shenzhen-HK 57321 Wirzburg 2412
Paris 13068 Rosenheim 806 SJ-San Francisco 51957 Qingdao 2165
Koln-Dusseldorf 12010 Kofu 768 Nagoya 43088 Hartford 2147
Seoul 9227 Toyama 645 Beijing 30394 Bern 2069
Stuttgart 8338 Iwakuni 633 New York City 25009 Bielefeld 1850
SJ-San Francisco 6725 Schwabisch G. 620 Boston 21918 Hyderabad 1806
London 6698 Bielefeld 612 Frankfurt 21233 Kaohsiung 1795
Source: Authors based on PATSTAT, PCT and Web of Science data.
Table 4: Largest GIH and NC, by number of publications
GIH NC GIH NC
Name 199802 Name 199802 Name 2011115 Name 2011115
Tokyo 184035 Kanazawa 14058 Beijing 282885  Changsha 36715
Washington- 148130 lowa City 13496 New York City 249036  Changchun 33989
Baltimore
New York City 142845  State College 13391 Tokyo 238489 Harbin 33425
London 124926  Strasbourg 13040 Boston 231877 Hefei 32268
Boston 123169 Ithaca 12958 Washington- 228408  Jinan 31194
Baltimore
Paris 117831  Marburg 12657 London 210969 Chongging 28437
SJ-San Francisco 106614  College Station 12263 Paris 184104  Kuala Lumpur 28413
Osaka 94043 Saint Petersburg 12203 Seoul 183014  Gent 27504
Los Angeles 77606 Brentwood 12147 SJ-San Francisco 174205 Padova 26429
Amsterdam 71431 Padova 11886 Amsterdam 143607 Cairo 24657

Source: Authors based on PATSTAT, PCT and Web of Science data.

The U.S. hosts the majority of GIHs and NCs (25%), followed by Germany (12.9%),
Japan (9.4%), China (6.8%), the U.K. (4.9%) and France (4.3%). By continent, Europe
concentrates 40.5% of GIH and NC, followed by North America (28%), Asia (25%),
Latin America (2.9%), Oceania and Pacific (2.7%), and Africa (1%). Their average
area is around 1,704.9 square km (3,013.44 square km for GIH and 977.45 square km
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for NC), and the average population is 1,949,350 inhabitants in 2015 (3,794,694 for
GIH and 923,504.4 for NC). On average, they have produced 12,881.7 patents from
1976 to 2015 (31,782.22 for GIH and 2,636.6 for NC), and 67,496.09 publications from
1998 to 2018 (31,782.22 for GIH and 2,636.6 for NC). Table 3 and Table 4 show the
top-10 GIH and NC, in two different time windows, separately for patents and for
scientific publications (longer lists and time periods are available in the annex).
Clusters are labelled according to the name of the largest city they host (as measured
by the number of inhabitants in 2005), with some manual double-checking (data from
WwWw.geonames.org).

While GIHs usually coincide with large urban areas, not all such areas host a GIH, or at
least a major one. GIHSs in Beijing, London, Los Angeles, New York, Seoul, and Tokyo
concentrate a large amount of both patents and scientific articles, those related to
Buenos Aires, Delhi, Istanbul, Mexico City, Moscow, Sao Paulo, and Tehran have a
much smaller scale. Others, such as Cairo, Bangkok, Kolkata, and Chongging,
conversely, host a NC. Finally, a certain number of highly populated metropolitan
areas — such as Jakarta, Karachi or Manila — do not host any knowledge agglomeration
at all.

Table 5: Ranking GIH and NC, for selected fields, patents

Audio-visual Biopharma
Position Share patents Cluster name Position Share patents Cluster name

1 32.35% Tokyo 1 9.82% Tokyo
2 9.25% Osaka 2 4.33% Osaka
3 7.28% Seoul 3 3.91% San Jose-San Francisco
4 2.34% Nagoya 4 3.88% Mannheim
5 2.33% San Jose-San Francisco 5 3.63% New York City
6 2.11% Shenzhen-Hong Kong 6 2.73% K6In-Dusseldorf
7 1.42% Taipei 7 2.60% Paris
8 1.27% New York City 8 2.35% Boston
9 1.15% Paris 9 2.25% Seoul

44 0.29% Rennes 74 0.25% Bern

45 0.29% Amsterdam 75 0.25% Mumbai

46 0.29% Ann Arbor 76 0.23% Singapore

47 0.29% Singapore 77 0.23% Taipei

48 0.29% Stockholm 78 0.22% Bengaluru

49 0.27% Cambridge 79 0.22% Nirnberg

50 0.26% Copenhagen 80 0.22% Rochester

51 0.26% Cheonan 81 0.22% Beolgyo

52 0.25% Basel 82 0.21% Bridgeport

53 0.25% Grenoble 83 0.21% Vancouver

54 0.25% Portland 84 0.21% Okayama

Source: Authors based on PATSTAT, PCT and Web of Science data.

On the other hand, some less dense urban areas in high-income and innovative
countries host a large number of important NCs. Table 5 and Table 6 rank,
respectively, GIH and NC by their share and patents (publications) in selected fields.
While, as expected, GIHs always come on top, some NCs (shaded in grey) do better
than many GIHs in certain technological or scientific fields). For instance, the NC
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Rennes produce more patents in Audio-visual technologies than other GIH in that field,
such as Amsterdam, Singapore, Ann Arbor, Stockholm, Cambridge or Copenhagen.
The NCs Bern or Mumbai do better in biopharma patents than GIHs such as
Singapore, Taipei, Nurnberg, Rochester or even Bengaluru.

The NC Ithaca, in the US, do better in producing publications in applied biology
compared to other big GIH, such as Brisbane, KdIn-Dusseldorf, Munich, Seattle,
Frankfort, Milan or Guangzhou. In Earth Sciences, the NCs Canberra, Honolulu or
Santiago de Chile are better positioned than Grenoble, Newcastle, or Austin. All this
indicates that, despite NC being, on average, smaller than most GIH, they can and do
better than the latter ones in certain fields, in which the NC might be relatively more
specialized.

Table 6: Ranking GIH and NC, for selected fields, scientific publications

Applied Biology Earth Sciences
Position Share pub. Cluster name Position Share pub. Cluster name
1 2.45% Tokyo 1 3.15% Beijing
2 1.93% Washington-Baltimore 2 2.46% Washington-Baltimore
3 1.87% Beijing 3 2.09% Paris
4 1.49% London 4 2.00% Tokyo
5 1.48% New York City 5 1.87% San Jose-San Francisco
6 1.35% Paris 6 1.65% Los Angeles
7 1.17% Boston 7 1.52% Boston
8 1.15% Osaka 8 1.48% New York City
9 1.13% San Jose-San Francisco 9 1.35% Amsterdam
31 0.63% Ithaca 57 0.45% Canberra
32 0.62% Mexico City 58 0.44% Honolulu
33 0.62% Brisbane 59 0.43% Santiago
34 0.61% K6In-Dusseldorf 60 0.43% Nijmegen
35 0.61% Munich 61 0.42% Bologna
36 0.60% Montpellier 62 0.42% Grenoble
37 0.60% Seattle 63 0.41% Prague
38 0.58% Nanjing 64 0.41% Newcastle
39 0.57% Mannheim 65 0.40% State College
40 0.55% Milan 66 0.40% Sao Paulo
41 0.54% Guangzhou 67 0.40% Austin

Source: Authors based on PATSTAT, PCT and Web of Science data.

When it comes to examining the behavior of knowledge agglomerations in relation to
the growing internationalization of innovation, we notice immediately that, in the
majority of the high-income and emerging countries, a limited number of GIHs and NCs
continued to produce the same share or even more of the knowledge produced nation-
wide.
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Figure 14: Share of patenting and publishing in clusters, by selected countries
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In Figure 14 we look at the cumulative patents that GIHs host over time (by country).
We draw blue lines for the total GIHs and for the GIHs in the top 25% of size rankings.
We see, for instance, that the share of patents produced in GIHs in the U.S. goes from
63% to 71% (71% and 78% respectively if we were adding NCs). We also draw grey
lines for the distribution of the top-10% most cited patents per year and technology.
We clearly observe that highly-cited, highly-valuable patents are systematically more

concentrated than the average patents. We see similar patterns of increasing

concentration for R. Korea, the U.K. and, especially, China and India (Figure 15, for
China and India, where top-cited patents concentration is removed). The evolution in
Germany is more stable (though with a slight increase in recent years), and stable or

even decreasing in France.

Lighter blue and grey lines show which part of this share is attributable to the

top-25% GIHSs, per country. The share of the most productive clusters has increased

over time in all countries shown, except for France and Germany.

The right panels of Figure 14 and Figure 15 reproduce these same figures for the
case of scientific publications. Again, we do not see a spatial spread of scientific
activities over time in most countries (except for France and, especially, China), and
even see slight increases in recent years for some countries.

Figure 15: Share of patenting and publishing in clusters, China and India
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In Figure 16, we look at the time evolution of unequal contribution of clusters. In this
case, both GIHs and NCs are included in the analysis. As shown in Figure 16 (left
panel), despite only 10% of GIHs and NCs (49) concentrate 70-80% of all patent
production, the concentration has gone down from almost 80% in the 1980s to around
70% at the end of the period. There is a slight increase of concentration in the last
years, though one would need to wait some extra years to see whether there is indeed
a change of tendency. Right panel finds the same decreasing trend for publications,
but starting from way less concentration levels (less than 50% throughout the whole
period).
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Figure 16: Concentration of patenting and publishing among clusters
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4.1 A global network of GIH and NC

The GIHs and NCs we detected form a veritable GIN. Figure 17 reports GIHs as
orange nodes and NCs as blue ones, linked one another by national ties (blue) and
international ones (green). The thickness of the links represents the amount of bilateral
collaborations between clusters, measured using

co-inventorship data. In these maps, only the top-10% largest links are depicted,
between 2011 and 2015.

We notice a thick web of ties between clusters in the US, Europe and Asia, as well as
among clusters within countries (especially within the US). However, it is difficult to
appreciate the structure of the relations of the network in such a zoomed-out map.
For this reason, we zoom-in below.

In the US, it seems that large GIHs tend to collaborate both nationally and
internationally. Smaller GIHs or NCs seem to be more specialized in national
interactions. In Europe a similar pattern can be detected, with certain clusters in each
country acting as gatekeepers that connect the national innovation system to the GIN.
Clear examples can be found in France, with Paris connecting other French cities with
the rest of the world, followed at some length by Lyon and Grenoble or the UK, with
London being the central actor. Germany shows some hierarchical structure too,
though access points to the GIN are more numerous. In China, this hierarchical
structure is also evident, with Shanghai, Beijing, and Shenzhen acting as the top
gatekeepers. For completeness, Figure 18 repeats the same analysis for publication
data.
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Figure 17: GIH, NC, and the Global Innovation Network, patent data 2011-2015

Source: Authors based on PATSTAT, PCT and Web of Science data.

Figure 18: GIH, NC, and the Global Innovation Network, scientific publication
data 2011-2015

Source: Authors based on PATSTAT, PCT and Web of Science data.

When drawing proper network graphs, as in Figure 19 (in two time periods), we can
appreciate the position of individual GIHs or NCs in the network. An innovation
agglomeration is more “central” within this global network the more international
connections it concentrates. The nodes are located in space depending on their
connectivity: better connected nodes (in terms of the number of other nodes to which
the focal node connects) are more central, and their size is determined by the total
number of patents (rescaled). As can be seen, large U.S. clusters are at the center of
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the graph, which means they are the most connected and central. The center of the
picture also hosts other GIHs which are arguably highly connected, such as Tokyo,
London, Shanghai, Beijing, Seoul, Paris, etc. Smaller clusters in each country are
connected to the big and highly connected ones in their own country, showing this
hierarchical pattern we discussed early (one can clearly see this for Japan, R. Korea
and the U.K.). On the other hand, several hotspots that are larger or similar in size to
the top U.S. agglomerations — for example, Tokyo — fail to occupy the same kind of
central position in the global network.

Figure 19: GIH and NC positions in the GIN, patents
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Patent co-invention network Patent co-invention network

2001-2005 2011-2015
Source: Authors based on PATSTAT, PCT and Web of Science data. Notes: Only the world’s 10%
largest links reported. Bubble size reflects patent volume. Bubbles positioned according to their network
centrality.

Figure 20: GIH and NC positions in the GIN, publications
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Publication co-invention network Publication co-invention network
2001-2005 2011-2015
Source: Authors based on PATSTAT, PCT and Web of Science data. Notes: Only the world’s 10%
largest links reported. Bubble size reflects patent volume. Bubbles positioned according to their network
centrality.
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The scientific network (for the two periods) is slightly different (Figure 20). Many other
nodes from the Rest of the World are as big and important in the network (they are
located in the center of the graphs) as countries of the 9 countries highlighted.
Moreover, nodes from many countries are located in the center, which indicates that
the network of clusters in scientific production is way less hierarchical.

4.2 The globalization of GIH and NC

As discussed earlier, R&D-intensive MNCs have prioritized knowledge-seeking foreign
expansion strategies; to a lesser extent, the same applies to large universities and
public research organizations. Such strategies put them into contact with GIHs and
NCs around the world, and at the same time provide links between them. As MNCs
wishes to tap into global knowledge and talent pools, knowledge clusters become the
most important location factor of innovation-oriented MNCs (Cantwell et al., 2010;
McCann and Mudambi, 2005).

But the relation between GIHs, NCs, MNCs and research organizations work in two
ways. Successful clusters cannot be self-sufficient in terms of the knowledge base
they draw upon, and the organizations within them (whether firms, universities, public
laboratories or other actors) deliberately build international links to complementary
pools of knowledge abroad, which would not otherwise be available locally (Awate and
Mudambi, 2017; Bathelt et al., 2004; Lorenzen and Mudambi, 2013; Turkina and Van
Assche, 2018).

Figure 21: Percentage of international patent and publication teams, inside vs
outside GIHs and SNCs
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--&- Inside (top 10% cited) --4#-- Outside (top 10% cited) ==4 - Inside (top 10% cited) =-@=- Outside (top 10% cited)

Patents Scientific publications
Source: WIPO based on PATSTAT, PCT and Web of Science data. Notes: Shares of the total patents
and scientific publications, respectively.

To what extent the internationalization process we examined in section 3 did impact on
the GIN of GIHs and NCs? In Figure 21 we split patents in two groups
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— the patents produced by clusters, which we defined as those whose teams

count at least one inventor address in a GIH or NC,

— the patents produced outside clusters (no inventor address to be found in any

cluster)

We see that patents produced in GIHs and NCs tend to be more internationalized than
those produced outside them. The difference is even starker when focusing only on
highly cited patents (10% more cited patents, per year and technology). At the same

time
pate
be p

, though, the trend inversion of recent years is more pronounced for clusters’

nts, which would point to some evidence that more complex knowledge needs to
roduced among geographically close researchers.

Figure 21, right panel, repeats the same approach, but for scientific publications.
Scientific publications produced in clusters are, on average, more internationalized that

their

non-cluster counterparts. Again, the pattern for highly-cited publications is the

same. We see, however, larger globalization for the case of publications (and larger
differences between clustered and non-clustered publications than what we see for
patents), and we do not observe the decrease on internationalization of teams
observed for patents.

Figu

re 22: GIHs’ and SNCs’ share of co-inventorship and co-publication

interactions, by partner location
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Source: WIPO based on PATSTAT, PCT and Web of Science data.

Figure 22 looks at the globalization of GIH and NC. We calculate the share of either
patents or publications produced in them in which:

1.

2.

the team includes at least one member located outside both the cluster and the
country to which the cluster belongs (international)

the team includes at least one member located outside the cluster, but no
foreign ones (national)

the team includes only local (within-cluster) members (local)

The team is formed by a single inventor/author
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Several patterns are worth reporting. The percentage of scientific and inventive output
in these innovation-dense agglomerations that does not involve any local, national or
international collaboration has decreased. Inventions with a single inventor went from
one-third in the 1970s and 1980s to less than a quarter. Scientific publication by a sole
author went from more than 40 percent in the early 2000s to less than 25 percent in the
second half of the 2010s. The more the hotspots and niche clusters collaborate, the
denser the network of knowledge they create.

In other respects, the picture differs depending on whether it is scientific or inventive
output. For patents, the share of local-only teams is larger than that of national and
international ones, while this is not the case for scientific publications. Nevertheless,
for scientific publications, international co-publication has continuously grown faster
than national and local collaborations. The same trend is observed for patents from the
early 1980s until the second half of the 2000s.

Since around 2005, however, there has been a fresh rise in the share of local-only
patents. The change coincides with a slowdown in the pace of globalization and
internationalization generally, as reflected in slower growth of trade, FDI flows and
financial integration. It also coincides with a decrease in the share of patents
generated by teams that are national but not just local. The explanation for the latter
could be that part of the slowdown in the globalization of knowledge creation and
innovation has to do with the rise of local hotspots rather than with the development of
new national innovation systems. For scientific publication, however, the trend has
been one of continued internationalization.

Figure 23 provides details of the same trends at the country level, for a selection of
high-income and emerging economies, respectively for patents and publications.
We consider five time periods for patents, finishing in 2017; and four time periods for
publications, from 2000 to 2017.

The degree of clusters’ internationalization varies considerably across countries, very
much in line with what we observed in sections 2 and 3, with countries like India or
Switzerland being most open, and R. Korea and Japan at the other extreme. In line
with evidence in sections 2 and 3, we notice a loss of weight of international teams for
countries like China in recent years. However, in the majority of the cases the pattern
in the last years is that of stagnation or slight growth. We see several cases in which
the share of national teams is reduced, like China, and the U.S. to some extent.
Interestingly, the slight decrease in international teams is absorbed by local teams,
whose share is larger for some countries in the last period.

As reported above, we do not see downturn or stagnation in international co-publication
patterns (rather the opposite) — Figure 22. Maoreover, we see that in all countries the
increase in international teams is absorbed by local teams or individual authors, that
see their shares systematically reduced in all countries analyzed.
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Figure 23: GIHs’ and NCs’ share of co-inventorship and co-publication
interactions, by partner location, selected countries
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5. Conclusions

In this paper, we have exploited a rich dataset of patent applications and scientific
publications in order to answer several questions concerned with two current
phenomena on the way knowledge is produced and shared worldwide: its
geographical spread at the international level and its spatial concentration in few
worldwide geographical hotspots. We recap the main messages of the paper as
follows.

First, we indeed observe that the production of patents and scientific publications has
spread geographically to several countries, and has not kept within the traditional
knowledge producing economies (Western Europe, Japan and the US). This meant
already an achievement, as knowledge-related phenomena such as patenting,
scientific production, R&D investments and so on have been always way more
concentrated than other pillars of globalization, such as trade or FDI. This has started
to change, and concentration of the former has started to converge towards the latter.

Second, in recent years we see an upturn degree of concentration in some variables
(notably, R&D expenditures and patents, particularly those highly-cited and belonging
to high-tech sectors). The same occurred in some technological fields and for highly
cited patents in the 1980s. Both processes could be related to the appearance of
certain breakthrough, highly-cited technologies in those years, that remain
concentrated in central countries at the beginning, and only disseminate after some
time and contribute to dispersion.

Yet, by the end of the period, Western Europe, Japan and the U.S. concentrated
around 70% of internationally-oriented patent activity, and more than 50% of all
scientific activity, which is a lot. In fact, it seems that the large majority of knowledge
production spreading is due to a handful of emerging economies, notably China. In the
meanwhile, large areas of the world, notably in Africa and Latin America, are left out of
the process of knowledge globalization.

Part of this partial geographical spread of knowledge activities is due to the setting up
of GINs and other knowledge networks, first toward more traditional innovative
countries, and then towards emerging economies too. However, networks among
innovation-core countries dominate, with an increasing share of them between the
latter and few emerging economies (with innovation networks among countries outside
the Triad being relatively marginal). This is less the case when it comes to scientific
publications, where the role of emerging economies, or even networks among non-
traditional hubs are on the raise.

Overall, we have seen an increasing degree of globalization of knowledge production
(that is, the formation of international teams in producing ideas). Interestingly, we see
some stagnation of co-inventorship networks in recent years (which we do not see in
publications). Part of this slight decrease is due to China and other emerging
economies. As they start competing with more advanced economies in producing
innovation, their need to rely in global networks is reduced — thus contributing
negatively to the globalization of innovation.

Yet, this does not seem to explain the whole picture, as some other large innovation
economies see their share of international teams to stagnate. One possible
explanation is the decline of multilateralism after the Great Recession, which could be
behind this downturn. An alternative explanation is the increasing degree of complexity
of innovation, which requires teams to be less geographically spread out.
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Another important message of this paper relates to the geographical distribution of
knowledge production within countries (both in traditional knowledge producers as well
as in emerging ones). Despite the increasing worldwide spread of knowledge
production, we do not see the same spreading process within countries, and even we
see some increased concentration in some of them. This may have, of course,
important distributional consequences within countries, which will need to be
addressed properly in the near future.

Not only these areas, which we have identified as GIHs and NCs, keep concentrating a
larger amount of idea production. We have provided evidence that they also
concentrate a large and increasing connectivity, within their own country to other
hotspots, and across countries through GINs. Again, this goes against lagging behind
areas of these countries, that not only produce less innovation, but also lack the
necessary connectivity to the outside world to avoid being lock-in in non-innovative
development paths. In fact, we have seen that when it comes to external patent
collaborations, clusters’ globalization has never slowed down: team members external
to the cluster are increasingly located abroad, whether in other clusters or not. This
reinforces the message that the main reason behind the overall reversal of
globalization is the increasing self-sufficiency of many clusters, not a comeback of
national innovation systems or the rise of new ones.

Finally, we have provided some evidence that, even within GIHs, inequalities arise,
with few of them being truly innovation and connectivity hubs, for both technology
developments and scientific advancements, and others having a more subordinate
position to these hubs (usually with one or few global hotspots per country, and other
clusters connecting internationally through the former one).
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Annex 1: Main data sources
Patent data

The patent data used in this report cover all patent documents — granted or not — filed
from 1970 to 2017 in all patent offices worldwide and available in the European Patent
Office’s (EPO) PATSTAT database and WIPQO’s Patent Cooperation Treaty (PCT)
collections. The unit of analysis is the first filing for a set of patent documents filed in
one or more countries and claiming the same invention. Each set containing one first
and, potentially, several subsequent filings is defined as a patent family. In the
analysis, patent families are split into those oriented internationally and those oriented
only domestically. Internationally oriented patent families refer to applicants seeking
patent protection in at least one jurisdiction other than their country of residence.
These include patent families containing only patent documents filed at the EPO or
through the PCT. Conversely, domestic patent families refer only to filings in a home
country, for instance, a Japan-based applicant filing only at the Japan Patent Office.
The raw data come the European Patent Office’s (EPO) Worldwide Patent Statistical
Database (PATSTAT, April 2019) and WIPQO'’s Patent Cooperation Treaty (PCT)
collections. In the analyzed period (1970-2017), these sources account for 49,286,675
first patent filings and 26,626,660 subsequent patent filings, totaling 75,913,322 patent
applications from 168 different patent offices.

Unless otherwise stated, the report makes use of international patent families only as
the unit of analysis for all patent statistics reported. This relates mostly to the
incomplete coverage of the domestic only patents (and utility models) of many national
collections in PATSTAT. While the top national and international offices are usually
well covered — namely USPTO, JPO, KIPO, CNIPA, EPO and WIPO — some other
offices have limited coverage in PATSTAT. For instance, the coverage in PATSTAT of
national collection data from some top 20 patent offices — such as India, Indonesia, Iran
(Islamic Republic of), Mexico and Turkey — is limited. As a result, the report makes use
of the information of 8,955,990 international patent families containing 35,582,650
different patent applications.

Scientific publication data

The scientific publication data used in this report comes from 27,726,805 records
published from 1998 to 2017 in the Science Citation Index Expanded (SCIE) of the
Web of Science (Wo0S), the citation database operated by the Clarivate Analytics
company. The analysis focuses on 23,789,354 observations referring only to scientific
articles, conference proceedings, scientific abstracts, and data papers. Scientific
articles constitute the bulk of the resulting dataset.
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Annex 2: Technological and scientific fields

For the purpose of the analysis, we grouped patents in 13 technological fields. These
fields were based on the 35 fields of technology from WIPO’s technology concordance
table relying on the International Patent Classification (IPC) symbols.®®* The criteria to
group the fields was: (1) to keep the resulting fields of a comparable size; and, (2) to
group them according to the co-occurrence of WIPQO’s categories. The resulting fields
range from 4.4% to 13.8% of total and group the 35 WIPO fields as follows:

1. Electronics (6.9%): Electrical machinery, apparatus, energy (1).

2. Audio-visual (4.4%): Audio-visual technology (2).

3. ICTs (13.8%): Telecommunications (3); Digital communication (4); Basic

communication processes (5); Computer technology (6); and, IT methods for

management (7).

Semiconductors & optics (7.3%): Semiconductors (8); and, Optics (9).

Instruments (10.8%): Measurement (10); Analysis of biological materials (11);

Control (12); and, Medical technology (13).

6. Biopharma (7.6%): Organic fine chemistry (14); Biotechnology (15);
Pharmaceuticals (16); and, Food chemistry (18).

7. Materials (4.9%): Materials, metallurgy (20); Surface technology, coating (21); and,
Micro-structural and nano-technology (22).

8. Chem & environment (4.4%): Chemical engineering (23); and, Environmental
technology (23).

9. Chemicals (8.5%): Macromolecular chemistry, polymers (17); Basic materials
chemistry (19); and, Other special machines (29).

10. Machines (9.7%): Handling (25); Machine tools (26); and, Textile and paper
machines (27).

11. Engines & Transport (12.3%): Engines, pumps, turbines (27); Thermal processes
and apparatus (30); Mechanical elements (31); and, Transport (32).

12. Civil engineering (4.5%): Civil engineering (35).

13. Consumer goods (5.1%): Furniture, games (33); and, Other consumer goods (34).

ok

Similar to patents, we also grouped the scientific publications in 12 scientific fields
based on the subject tags to scientific publications in the Web of Science SCIE data.
We based these fields in the existing categories by the Observatoire de Sciences et
Techniques (OST) also with the criterion to group the publications in fields of a
comparable size. The resulting fields range from 5.6% to 12.9% of total and group the
35 WIPO fields as follows:

1. Applied Biology (7%): Plant Sciences; Veterinary Sciences; Agriculture; Zoology;
Transplantation; Biology; Life Sciences & Biomedicine - Other Topics; Ecology;
Entomology; Fisheries; Forestry; Agriculture, Dairy & Animal Science; Agronomy;
Agriculture, Multidisciplinary; Mycology; Soil Science; Biodiversity & Conservation;
Biodiversity Conservation; Horticulture; Agricultural Engineering; Materials Science,
Textiles; Ornithology; Biochemistry & Molecular Biology.

2. Biochem & Biotech (9.2%): Biochemistry & Molecular Biology; Cell Biology;
Biotechnology & Applied Microbiology; Genetics & Heredity; Chemistry.

3. Chemistry (12.9%): Chemistry; Chemistry, Multidisciplinary; Materials Science,
Multidisciplinary; Chemistry, Physical; Polymer Science; Chemistry, Analytical;
Chemistry, Organic; Electrochemistry; Nanoscience & Nanotechnology;
Crystallography; Chemistry, Inorganic & Nuclear; Chemistry, Applied; Chemistry,

13 www.wipo.int/export/sites/www/ipstats/en/statistics/patents/pdf/wipo_ipc_technology.pdf
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10.

Medicinal; Materials Science, Coatings & Films; Materials Science, Ceramics;
Materials Science, Composites; Materials Science, Characterization & Testing;
Materials Science, Paper & Wood; Oncology.

Clinical Medicine (12%): Oncology; Radiology, Nuclear Medicine & Medical
Imaging; Psychiatry; Clinical Neurology; Pediatrics; Medicine, General & Internal;
Pathology; Dermatology; Toxicology; Health Care Sciences & Services;
Rheumatology; Critical Care Medicine; Otorhinolaryngology; Allergy; Rehabilitation;
Emergency Medicine; Tropical Medicine; Andrology; Environmental Sciences &
Ecology.

Earth Sciences (6%): Environmental Sciences & Ecology; Environmental
Sciences; Geology; Marine & Freshwater Biology; Water Resources; Meteorology &
Atmospheric Sciences; Geochemistry & Geophysics; Geosciences,
Multidisciplinary; Oceanography; Engineering, Environmental; Paleontology;
Mineralogy; Geography, Physical; Physical Geography; Engineering, Geological;
Limnology; Engineering.

Engineering (9.3%): Engineering; Energy & Fuels; Metallurgy & Metallurgical
Engineering; Mechanics; Engineering, Chemical; Instruments & Instrumentation;
Thermodynamics; Engineering, Mechanical; Engineering, Civil; Construction &
Building Technology; Engineering, Biomedical; Engineering, Multidisciplinary;
Engineering, Manufacturing; Engineering, Industrial; Transportation; Engineering,
Aerospace; Mining & Mineral Processing; Engineering, Petroleum; Transportation
Science & Technology; Engineering, Ocean; Engineering, Marine; Neurosciences &
Neurology.

Fundamental Biology (7.4%): Neurosciences & Neurology; Microbiology;
Biophysics; Physiology; Reproductive Biology; Biochemical Research Methods;
Virology; Evolutionary Biology; Developmental Biology; Mathematical &
Computational Biology; Medical Laboratory Technology; Parasitology; Materials
Science, Biomaterials; Anatomy & Morphology; Neuroimaging; Microscopy; Cell &
Tissue Engineering; Immunology.

Medical Science (7.7%): Immunology; Gastroenterology & Hepatology;
Hematology; Respiratory System; Infectious Diseases; Medicine, Research &
Experimental; Research & Experimental Medicine; Peripheral Vascular Disease;
Physics.

Physics & Math (9.4%): Physics; Physics, Applied; Optics; Physics, Condensed
Matter; Physics, Multidisciplinary; Mathematics, Applied; Physics, Atomic,
Molecular & Chemical; Spectroscopy; Physics, Particles & Fields; Physics,
Mathematical; Statistics & Probability; Physics, Nuclear; Physics, Fluids & Plasmas;
Mathematics, Interdisciplinary Applications; Public, Environmental & Occupational
Health.

Social & Human Sciences (6.3%): Public, Environmental & Occupational Health;
Psychology; Nutrition & Dietetics; Sport Sciences; Nursing; Behavioral Sciences;
Geriatrics & Gerontology; Business & Economics; Substance Abuse; Integrative &
Complementary Medicine; History & Philosophy Of Science; Health Policy &
Services; Education & Educational Research; Economics; Psychology,
Experimental; Education, Scientific Disciplines; Anthropology; Audiology & Speech-
Language Pathology; Gerontology; Psychology, Clinical, Psychology, Biological;
Social Sciences - Other Topics; Primary Health Care; Management; Environmental
Studies; Psychology, Multidisciplinary; Medical Ethics; Biomedical Social Sciences;
Social Sciences, Biomedical; Legal Medicine; Medicine, Legal; Social Issues;
Mathematical Methods In Social Sciences; Social Sciences, Mathematical Methods;
Psychology, Developmental; Psychology, Applied; Linguistics; Ethics; Hospitality,
Leisure, Sport & Tourism; Archaeology; Geography; Ergonomics; Agricultural
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11.

12.

Economics & Policy; Philosophy; Women's Studies; Social Sciences,
Interdisciplinary; Urban Studies; History; Business; Sociology; Art; Government &
Law; Law; Music; Psychology, Mathematical; Education, Special; Business,
Finance; Communication; Family Studies; Social Work; Language & Linguistics;
Ethnic Studies; Criminology & Penology; Psychology, Educational; Psychology,
Psychoanalysis; History Of Social Sciences; Planning & Development; Public
Administration; Religion; Arts & Humanities - Other Topics; Humanities,
Multidisciplinary; Demography; Psychology, Social; International Relations;
Industrial Relations & Labor; Literary Theory & Criticism; Literature; Surgery.

Surgery (7.2%): Surgery; Urology & Nephrology; Cardiac & Cardiovascular
Systems; Obstetrics & Gynecology; Ophthalmology; Orthopedics; Dentistry, Oral
Surgery & Medicine; Anesthesiology; Science & Technology - Other Topics.

Technology (5.6%): Science & Technology - Other Topics; Telecommunications;
Nuclear Science & Technology; Automation & Control Systems; Operations
Research & Management Science; Computer Science, Information Systems;
Computer Science, Artificial Intelligence; Computer Science, Theory & Methods;
Computer Science, Interdisciplinary Applications; Acoustics; Computer Science,
Software Engineering; Imaging Science & Photographic Technology; Remote
Sensing; Computer Science, Hardware & Architecture; Medical Informatics;
Information Science & Library Science; Robotics; Green & Sustainable Science &
Technology; Computer Science, Cybernetics; Logic; Architecture; .
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Annex 3: Geolocalization methodology
Patent data

As far as possible, the geocoding — attributing the geographical coordinates to a given
location — relates to the inventors’ address based on the best available data source
within a patent family. The data work relies on the research efforts and generosity
conducted by many others. In particular, it relies on geocoded patent data from Yin et
al. (2018), Ikeuchi et al. (2017), Li, et al. (2014), de Rassenfosse et al (2019),
Morrison et al. (2017) and PatentsView (www.patentsview.org, accessed March 2019).
Many addresses are geocoded at a very precise level —i.e. street or block — but others
only at the postal code or other sub-city level. To remain internationally comparable,
but also due to the limited coverage of inventors’ addresses in some national
collections, the clustering analysis (see annex 4) relies only on internationally oriented
patents.

For patents, 87 percent of the international patent families filed from 1976 to 2015 were
geocoded.* Most of the non-geocoded cases had no usable address information.

As far as possible, the geocoding was applied to the inventors’ addresses by using the
most complete and reliable data source available within each patent family. In addition,
the data were enriched with exiting geocoded patent data (see Yin et al., 2018; Ikeuchi
et al., 2017; Li, et al., 2014; de Rassenfosse et al, 2019; Morrison et al., 2017).

All these sources and our own geocoding using ESRI or Geonames and geocoded
postal codes official national sources were analyzed and consolidated to get the best
possible geocoded data for each patent family. When there was more than one source
for a given patent family, the following order of priority was given: (1) sources having
information from the inventor (inventor principle); (2) sources having more

inventors’ addresses covered (coverage principle); (3) sources with the best geocoding
resolution (resolution principle); (4) sources closest to the address country —

e.g. entrusting Chinese addresses to CNIPA data, Japanese addresses to JPO data,
etc. — (local principle); and (5) manually check and ad-hoc selection when two or more
sources were still available. As a result, many inventor’s addresses were geocoded at
a precise level —i.e. street or block — but others only at the postal code or other
sub-city level. Patent families containing more offices are more likely to be geocoded
and at higher quality. This is another reason why the report relies only on international
patent families.

Scientific publication data

The report assumes that research conducted for any publication takes place at the
institutions and organizations to which the authors declare their affiliation. Virtually all
of these locations were geocoded at the postal code or sub-city level using Geonames
and geocoded postal codes official national sources. In the case of authors with more
than one affiliation in the same publication, all different addresses are considered.

97 percent of all the available affiliation addresses were geocoded at the postal code or
sub-city level.

14 Patents in the entire period 1970-2017 were also geocoded, but the lack of complete
addresses is more severe before 1976 and after 2015.
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Annex 4: ldentifying clusters from geo-referenced data

In some countries, the size gap between the different administrative areas is quite
important. In the U.S. for example, one jumps from States (whose size is also very
heterogeneous) down to counties. This is a well-known issue in spatial analysis, which
goes under the name of modifiable areal unit problem (MAUP), which produces
statistical and visual biases when aggregating point-based measures of spatial
phenomena. Results and conclusions, both exploratory and confirmatory, can change
considerably depending on the administrative area chosen as unit of analysis.

A related problem arises when one aims to carry out international comparisons of the
agglomeration of economic and innovative activities, such as in our case. The
administrative areas are country-specific and hardly comparable across countries.
For example, the Chinese smallest units are counties, which tend to be larger than
U.S. counties as well as than European NUTS3 regions. Even within Europe, a
relatively homogeneous multi-country region, comparisons are difficult. The average
size of a U.K. NUTS2 region is 6.581 square km. This same average jumps to
24.726 square km for France and 31.157 square km for Spain.

Next, administrative borders do not often coincide with the limit of the agglomerated
economic activity one aims to measure (Alcacer and Zhao, 2016). It could be that a
given economic activity encompasses a territory smaller than a given administrative
areas, while there is nothing of that activity in the rest of its geographical space.

It could be that a given administrative area hosts two or more distinct agglomerations,
which we would not be able to identify if we rely only in administrative units. It could
even be sometimes that the relevant agglomeration of economic and innovative
activities span across county, region, State or even country borders, making the use of
formal administrative areas misleading. Confounding different agglomerations within
the same administrative unit inflicts further damage to the analysis when the two
agglomerations have distinctive characteristics, such as different specialization
patterns. For example, we may confuse two specialized agglomerations, respectively
specialized in chemicals and electronics; or a classic Marshallian districts, highly
specialized in a traditional or high-tech sector, with Jacobian cities, whose strength lies
in its diversification and cross-industry spillovers. To the extent that we are interested
in the role played by both types of agglomerations in the internationalization and
globalization of science and technology, this confusion is highly undesirable.

A vast literature exists, which proposes different solutions to the MAUP, all of which
consists in identifying agglomerations from georeferenced micro-data (Alcacer and
Zhao, 2016, 2012; Delgado et al., 2016; Duranton and Overman, 2005; Ellison and
Glaeser, 1997; Ester et al., 1996; Kerr and Kominers, 2014). We follow a similar
approach here. In particular, we use all foreign-oriented patents from PATSTAT, from
1976 to 2015 to identify patent agglomerations, and Clarivate’s Web of Science, from
1998 to 2017, to identify publication agglomerations.

We use DBSCAN (Density-based spatial clustering of applications with noise), an
organically defined cluster identification approach based on the density-based
algorithms, well-known in the geography literature (Ester et al., 1996). In a nutshell,
DBSCAN is a well-known data clustering algorithm for geo-referenced spatial raw data,
which is particularly suited for capturing agglomerations with an irregular shape

(Ester et al., 1996).
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Density-based spatial clustering of applications with noise

Density-based spatial clustering of applications with noise (in short, DBSCAN) is a well-
known data clustering algorithm that is commonly used to identify clusters from spatial
raw data. The algorithm was first proposed by Ester et al. (1996) who demonstrated
how density-based algorithms are more suitable than partitioning and hierarchical
methods to capture clusters with an irregular shape.

This feature makes DBSCAN algorithm particularly suited to our purpose, given the
type of data we use, since we want to be able to identify clusters which may develop
geographically across countries and very different urban areas, without being limited by
administrative boarders.

Based on a set of coordinates, DBSCAN groups together points that are close to each
other based on a distance measure and a minimum number of points. It also allows
marking as outliers the points that are in low-density regions and thus are not included
in any cluster. Also, this second feature is particularly important in our datasets,
because we want to allow patenting and publication to still occur outside any cluster.

DBSCAN divides a dataset into subgroups of high density regions. The two
parameters required for DBSCAN are epsilon (¢) and minimum amount of points
required to form a cluster (minPts). The parameter epsilon defines the radius of
neighborhood around a point x. It's called the e-neighborhood of x. The parameter
minPts is the minimum number of neighbors within € radius.

We can imagine each data point having a circle with radius € drawn around it. Using €
and minPts, we can classify each data point as:

— Core point: a point that has at a number of other points greater than or equal to
minPts within its € radius;

— Border point: a point is within the € radius of a core point but has less than the
minimum number of other points (minPts) within its own € radius;

— Noise point: a point that is neither a core point nor a border point.

The figure below shows the different types of points (core, border and outlier points)
using minPts = 6. Here x is a core point because neighbors.(x)=6, y is a border point
because neighbors.(y)<minPts, but it belongs to the e-neighborhood of the core point x.
Finally, z is a noise point. Each core point forms a cluster together with the points that
are reachable within its € radius.

Figure A.1. DBSCAN core points, border points and noise points

minPts = 6

-

Source: Authors based on Ester et al. (1996) and https://www.datanovia.com/en/lessons/dbscan-density-
based-clustering-essentials/ (accessed November 8, 2019).

46


https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/
https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/

Choosing DBSCAN parameters

As mentioned above, DBSCAN algorithm requires two input parameters: epsilon,
which specifies how close points should be to each other to be considered a part of a
cluster; and minPts, which specifies how many neighbors a point should have to be a
core point of a cluster. The choice of these two parameters is arbitrary and critically
determines the results of the cluster identification both in terms of size and shape of the
clusters.

After some visual inspection of the data, and given the less precise geocoding of
scientific publications (postal code, and not street) we set two different epsilon
parameters for, respectively, patent and publication data. For publication data we
calculated the average commuting distance to work in OECD countries (23 Km)
(OECD, 2011), while for patent data we relied on a smaller radius, the 13 Km, as in
Bergquist et al (2017).

To decide minPts, and after we have chosen the value for epsilon, we proceed as
follows:

e We identify how many points lie within each point’s epsilon-neighborhood.
In order to do so, we used GIS software to create a buffer zone with epsilon
radius around each coordinate point (i.e., buffer zones of 23/13 km radius
around each coordinate point, respectively for scientific publications and
patents) and counted each point’s neighbors within the buffer — coordinate
points weighted by the number of actual points in each coordinate.

¢ Once we have counted the number of neighbors, we run DBSCAN setting the
minPts parameter at the median of the distribution of the number of neighbors.
Choosing as threshold the median of the number of neighbors, allows half of
the points to be considered as core points by the clustering algorithm.

The algorithm is run separately for patents and scientific publications. In particular, we
use all foreign-oriented patents from PATSTAT, from 1976 to 2015 to identify patent
agglomerations, and Clarivate’s Web of Science, from 1998 to 2018, to identify
publication agglomerations. After having identified the two types of agglomerations
separately, we merge them and keep the outer borders in case that some patent and
publication agglomerations overlap (more details below), identifying separately global
clusters of patents and global clusters of publications.

Next, we also take care of fine-tuning our algorithm in order to make it suitable to
identify both specialized and diversified agglomerations of patents and publications.
The above method is repeated for 25 sub-samples of the publication and patent data
that do not lie into the above identified clusters, which refer to 12 scientific fields and
13 technological ones, respectively.'®

Figure A.8. below shows the distribution of the number of neighbors and the median
value selected as minPts parameter for publication and patent data.’® As can be seen,

15 We also calculate minPts at the country level, which allows us to identify country specific innovation
clusters. For highly innovative regions (such as the North America, Eastern Asia, Western and Northern
Europe), the country threshold of minPts will be higher than the global one, thus only the denser areas will
be identified as clusters, while the opposite is true for less innovative areas.

16 The mean value is showed for comparison purposes, as well as because it is used as minPts
to determine the clusters in technological fields 5100 and 5200.
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thresholds are quite different across fields, reflecting the large heterogeneity among
them.

Based on different ways to choose the parameters necessary to run DBSCAN, we
have uncovered two types of agglomerations:

1. Global Innovation Hotspots (GIH): these are agglomerations that emerge from
DBSCAN when using all the data across fields and technologies pooled
(separately for publications and foreign-oriented patents). They are therefore
large knowledge centers, either in patents or in scientific publications (normally
in both)

2. Niche Clusters (NC): these are agglomerations emerging when running
DBSCAN separately for each technology and field, respectively for patents and
publications, to the patents and publications that do not belong to GIH. As the
parameters chosen to run DBSCAN depend on the total number of
patents/publications in a given field, with this second method some niche
clusters that do not qualify to be GIH are identified.

Figure A.2. minPts value for publication and patent data
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Figure A.3. minPts value for publication data by scientific field
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7 - Fundamental Biology
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Figure A.4. minPts value for patent data by technological field
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Delimiting clusters’ borders

We explain in more detail in this section how the different layers (clusters identified
separately in patents and publications, and across the 25 fields — 12 scientific fields
and 13 technological ones) that partially or totally overlap are merged, and how the
borders of our final list of GIH and NC are defined.

First, once each coordinate point is assigned to a cluster-layer, their boundaries are
defined by means of the convex and concave hull algorithms. The convex hull in a set
X of points in the Euclidean space is the smallest convex set that contains all the X
points. That is to say, it is a polygon encompassing all the X points, with straight, short
lines connecting the outer points in space among X. Any point inside the outer shape
belongs to the polygon. The convex hull however does not correctly handle concave
shapes, and some points may be assigned to belong to a given polygon, while they are
not. The concave hull starts from the convex hull, but removes the concave areas that
do not have any point inside (Moreira and Santos, 2007). Different ways to remove
these areas exist. We make sure to never go beyond cutting more than 25% of the
original polygon, in order to ensure a meaningful shape of the polygon, especially when
these are based in relatively few coordinate points.

Figure A.5. Convex and concave hull

Figure A.11.a. Convex hull algorithm. It does not  Figure A.11.b. Concave hull.
represent the area occupied by the set of points.
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Thus, we compute all concave hulls to establish the boundaries of the polygons that
encloses all the points belonging to a single-layer cluster. In most of the cases, as the
identified clusters have more than two spatial points, the output is a polygon. However,
when the cluster encompasses only a single point or a line (two points), a buffer of
13km is added, in order to transform it into a polygon and facilitate its visualization (this
only happens around 5 cases between GIH and NC; one critical example being
Teheran, where all its publications are geo-referenced in the same single coordinate
point).

Layers identified from the concave hull after using patent and publication pooled data
are merged to create the final boundaries of the GIH. In this step we only merge
polygons from the patent layer (A) with polygons from the scientific publication layer (B)
and vice versa, as by definition the polygons within each of the previous layer do not
intersect each other, in order to create a new layer of polygons (C). In order to make
this join, we follow four main criteria, as follows:

1. If a polygon (a), such that (a) is contained in A, intersects any polygon (b), such
that (b) is contained in B, and the intersected area is equal or larger than 5%
the area of (a), then (a) is joined with (b) and a new polygon (c) is created, such
that ¢ belongs to the new layer C. This process is repeated for the polygons (b)
that were not initially contained in C, when the intersected area with (a) is equal
or larger than 5% the area of (b).

2. If a polygon (a) intersects any polygon (b) and the intersected area is less than
5% the area of (a) or (b), then (a) and (b) are considered as different polygons.
The intersected area is assigned to the polygon with the larger area, so the
polygons (@’) and (b’) are created in the layer C.

3. If a polygon (a) does not intersect any polygon (b), then (a) and (b) are added to
the layer C.

4. As a polygon from a layer (a) can intersect more than one polygon from layer
(b) and vice versa, we repeat the procedure described in steps 1) and 2) using
a threshold of 20% instead of 5%, for the polygons in layer c that intersects
other polygons from the same layer.

For the NC, we follow a similar procedure as for GIH, but we first compute the union for
each type of cluster no matter their field, before creating the final polygons. More
specifically, after creating single layers for each of the type-fields (step 1), we create
layer by type (a layer enclosing the 13 patent-field layers and another enclosing all the
12 scientific publication layers), applying the same four criteria iteratively. In other
words, for each type of layer (patent or scientific publications) we begin merging two
field-layers (i.e. the first two categories of the fields) and then we add to this output
each of the remaining individual field-layers sequentially. It should be noticed that the
polygons of the specialized clusters do not intersect the polygons of the hotspots, as
for identifying specialized clusters we only consider the geographical points that are
outside the hotspots’ boundaries.

By definition, the resulting areas: (1) are internationally comparable, i.e. the same
scientific publication or patent (specialized) density would have determined the same
hotspot (cluster) anywhere in the world; (2) can have different scientific and
technological density, i.e. hotspots and niche clusters need only scientific publication
or patent high concentration, but not necessary both; (3) have different specialization
density, i.e. niche clusters are defined with lower density thresholds than hotspots; (4)
are distinct geographical areas, i.e. the polygons are non-overlapping within and
across hotspots and niche clusters; and, (5) have non-predefined boundaries, i.e.
hotspots and niche clusters can have different sizes and include more than one city,
state/province or country.
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