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Abstract 
 
This paper analyses the evolution of innovation in the mining sector and how this innovation 
responds to the economic environment, in particular to changes in commodity prices.  For 
this purpose, we combine commodity price data with innovation data as proxied by patent 
filings extracted from a novel unit record database containing comprehensive patent and firm 
level data for the mining sector from 1970 to 2015.  We include patents registered both by 
mining companies and mining equipment, technology and service (METS) firms.  With a 
multi-country panel analysis, we find that innovation in the mining sector is cyclical.  
Innovation increases in periods of high commodity prices while decreasing during commodity 
price recessions.  Our results suggest that innovation increases mostly with long price cycle 
variations, while mostly unaffected by medium and short cycles.  METS related innovation 
seem the driving force of this mechanism.  In contrast, countries specializing in mining 
industries are found to be slower in reacting to price changes. 
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1 Introduction 
 
Mining and other associated activities are a significant part of the global economy.  The 
value of global mine production has been estimated at around USD 1.3 trillion in 2014 
(Lof and Ericsson, 2016).  In 2015, mining related commodities represented approximately 
two percent of the world’s total trade (UN COMTRADE, 2016).  The mining industry provides 
non-replaceable products for our everyday needs.  Products of the mining industry are used 
to build everything that surrounds us, from infrastructure to personal devices.  The growing 
worldwide population, together with rising living standards, has increased the demand for 
minerals.  Typically, the mining industry meets increasing demand in the short-term by 
optimizing operations in existing mining sites with decreasing returns.  In the long-term, 
mining companies search for new mining sites that meet the demand requirements.  In 
addition, the mining industry faces continuous operational challenges to fulfil the increasing 
sustainability and social requirements demanded by society.  Innovation is a key instrument 
to address all these challenges. 
 
Given the boom in demand, the decreasing returns of existing sites and the sustainability 
requirements, it is not surprising that mining related commodities have seen a remarkable 
increase in price over the past two decades.  Equally predictable was the well-documented 
boom in mining production and exports that followed.  What has happened to the rate of 
mining-related innovation during this period remains an understudied topic. 
 
In this paper we study the effect of variation in commodity price on the innovation carried out 
within the mining industry.  In particular, we look at whether the existence of cycles in 
commodity price, distinguishing between short- and long-term cycles – the so-called super-
cycles – affects innovation levels.  We identify the mining industry as the industry where the 
extraction of minerals takes place.  We include coal in this definition but exclude oil and gas 
and quarrying. 
 
Mining companies are increasingly sourcing innovation from specialized suppliers (Bartos, 
2007).  Therefore, we consider the mining industry in a broader technological sense.  In 
addition to companies directly engaged in finding and developing mines, we include service 
providers which support the everyday activities of the mining firms by providing specialized 
equipment and technology, a sector commonly referred to as the Mining, Equipment, 
Technology and Services (METS) sector.  Innovation is proxied by patent filing.  Mining 
related patents filed by both mining firms and METS firms are part of the analysis.   
 
This paper relies on mining patent data consolidated by WIPO for the period 1970-2015.  
We merge the patent data with a series of indicators related to the mining sector based on 
data from the World Bank, namely a mineral commodity price index, an estimation of 
effective demand of mining production and the country exposure to mining.  We identify price 
cycles of different length using the Christian and Fitzgerald band-pass filter (Cuddington and 
Jerret, 2008).  We conduct the analysis first using time series and then using panel data. 
 
We find empirical evidence of pro-cyclicality between innovation and prices in the mining 
sector.  We model innovation as response to changes in commodity prices and test for the 
effects of different cycle lengths.  Our results suggest that innovation reacts more to long 
cycle changes rather than shorter ones.  We also analyze the effect on mining innovation 
distinguishing between innovation generated by mining companies and by METS firms.  
METS companies appear the driving force of mining innovation response to price changes.  
When we move to the panel analysis, we find that mining specialized countries – as opposed 
to countries having little mineral production – only react to changes in the long cycle 
components of commodity price. 
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The rest of the paper is structured as follows.  Section 2 reviews the literature and provides 
motivation for the paper’s main research questions.  Section 3 presents the data while 
providing a descriptive overview of the mining industry innovation; it also discusses our 
estimation method.  Section 4 comments on the results and the main robustness checks 
performed and Section 5 concludes. 
 
2 Literature review and hypotheses 
 
External macroeconomic and financial shocks certainly affect mining production, but little is 
known on how they translate to the sector’s technological change.  Mining is considered a 
very cyclical sector.  When prices are high, new mines are opened and existing mines are 
exploited more intensively.  While when prices are low, production slows and mines are 
closed (Batterham, 2004).  The way innovation and technology development react to these 
price cycles remain, to the best of our knowledge, an unexplored topic.   
 
As part of the commodity super-cycle, mining related commodities have seen an outstanding 
increase in price over the past 15 years, which has been accompanied by a well-
documented boom in mining production and exports.  This period has not only been 
characterized by a high increase in prices but also a higher volatility (IMF, 2015).  Recent 
work has shown that mining innovation – proxied by patent applications – in general has 
followed this boom, but it has also down trended after the global financial crisis (Daly et al., 
2019). 
 
There have been many studies about trends and cycles in commodity prices (Tilton, 2006; 
Radetzky, 2006).  A few of these have focused on the mining commodities, such as Labys, 
Achouch and Terraza (1999), by analyzing the relationship between metal prices and 
business cycles.  But in general, there has been less attention on the economic effects of the 
longer cycles of these prices.  Traditionally, economic scholars have been very skeptical 
about the presence of these commodities “supercycles” (Howrey, 1968; Cogley and Nason, 
1995).  However, a number of relatively recent studies have begun to shed some light on the 
topic (Solow, 2000; Comin and Gertler, 2006; Cuddington and Jerret, 2008).  They find 
empirical evidence of substantially more volatile and persistent fluctuations in the medium- 
and long-term of business cycles and commodity prices, respectively. 
 
What happened to the innovation rate of mining-related technologies during the recent 
period? Given the stiffness that characterizes mining sector investment, it seems plausible 
that R&D decisions will be based more on expectations about long-term variation of price 
rather than short-term ones.  The existing literature has focused on how R&D expenditures 
varies over business cycles, although never focusing on mining or other commodity sectors.  
The traditional view is that recessions should promote various activities that contribute to 
long-run productivity and thus to growth, such as technical change (Canton and Uhlig, 1999), 
job turnover (Gomes et. al. 2001) and human capital accumulation (Barlevy and Tsiddon, 
2006).  Many studies have found innovation to be pro-cyclical, measured by R&D activities 
(Fatas, 2000; Rafferty and Funk, 2004; Barlevy, 2007) or patents (Geroski and Walters, 
1995).  According to Geroski and Walters (1995), the direction of the causality seems 
statistically stronger for business cycles causing innovation than the opposite, although 
innovation is largely explained by other factors than demand.  In what concerns the length of 
cycles, Barlevy (2007) argues that macroeconomic shocks are likely to have overly 
persistent effects due to such the pro-cyclicality of R&D activities. 
 
The mining industry is often considered a slow innovator (Scherer, 1984).  Nevertheless, 
Bartos (2007) shows that its rate of innovation is comparable with general manufacturing, 
even if it is still lower than so-called high-tech manufacturing (Dunbara et. al. 2016).  
The total amount of money spent on R&D by the sector is significant, particularly in mining 
specialized countries such as Australia (Balaguer et al., Forthcoming).  According to 
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EUROSTAT figures (2018), the mining sector spent 592 million euro in 2015, which is below 
the amount spent by the pharmaceutical (9,791 million euro) or chemical manufacturing 
(6,681 million euro) sectors but higher than agriculture (589 million euro) or consumer 
electronics (313 million euro). 
 
Figure 1 shows the private R&D expenditure in EU countries together with the metals and 
minerals price index from the World Bank.  We can see a positive correlation between the 
two indicators with some delay of the R&D expenditure in reacting to price changes. 
 
Figure 1.  Private R&D expenditure in mining and quarrying in EU countries, and World Bank 
metals and minerals price index  

 
Source:  Eurostat (2018), BERD by NACE Rev.  25 activity.  Note:  EU includes Belgium, Bulgaria, Czech Republic, Denmark, 
Germany, Ireland, Greece, Spain, France, Croatia, Italy, Lithuania, Hungary, Netherlands, Austria, Portugal, Romania, 
Slovakia, Finland, UK, Iceland and Norway. 

 
In addition to R&D expenditure, the discovery of new commercially viable mining deposits 
through exploration is an important part of the economics of the industry.  In fact, there is a 
case to be made that it is the deposit or the mine that is really the new ‘product’ rather than 
the mineral recovered therein.  Viewed in this way, a company’s expenditure on exploration 
becomes a part of its R&D expenditure, in the sense that it is expenditure aimed at finding 
new, commercially-exploitable sources of a mineral, even though exploration may not be not 
recognized formally as R&D. 
 
There are interesting parallels here with other industrial sectors.  Mines, open up, operate 
and close down, very much in the way that manufactured products are invented and 
produced before moving through to obsolescence.  Just as industries like pharmaceuticals 
spend large amounts of money on trying to discover new marketable drugs, despite the long 
odds against them, so the mining industry has to battle equally long odds in its search for 
commercially viable ‘greenfield’ (new) sources of a mineral commodity.  Very broadly it has 
been estimated that for every thousand mineral occurrences identified, only one will be 
subject to exploration and of every thousand deposits explored, only one is likely to become 
a mine (Kreuzer and Etheridge, 2010).  In any case, existing series of worldwide exploration 
expenditures show a high degree of correlation with the evolution of the price index for non-
ferrous metals (see Figure 2). 
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Figure 2.  Mineral exploration expenditure by commodity and non-ferrous metals price index 

 
Source:  SNL Mining & Metals, The Economist. 

 
Understanding the innovation activity in the mining sector is important, and challenging.  
Innovation can take place at different stages of production:  (1) exploration and discovery of 
new deposits, (2) organization and site construction, (3) exploitation of the site, and (4) 
decommissioning and final closure of the site.  In addition to companies directly engaged in 
finding and developing mines, there is a large number of METS companies supplying the 
mining industry with equipment and technology. 
 
METS companies contribute a substantial share of the innovation in the mining sector.  
These companies work very closely with mining companies to understand their requirements 
and to develop innovative solutions.  METS firms invest, on average, more on R&D 
compared to mining firms (Daly et al, 2019).  They also have lower capital expenditures than 
mining companies, which are required to have big initial investments both for the exploration 
phase and for the establishment of mining operations.  Mining firms often prefer to outsource 
services to METS firms rather than making it in a less efficient way.  For instance, transport 
innovation in the mining sector is often produced METS companies (Dionori and Zehtabchi, 
forthcoming).  METS firms are therefore an essential part of the mining innovation 
ecosystem. 
 
Table 1 summarizes the differences between mining and METS firms along crucial 
dimensions of their activity.  In general, mining firms are large and they operate at different 
stages of the mining value chain.  METS firms range from big multinationals – 
e.g. Caterpillar or Siemens – which not only provide specialized services for the mining 
sector, but also serve other industries as well; to SMEs, which are typically specialized in the 
production of one product or service specially developed for the mining activity. 
 
On average mining firms have larger sunk costs compared to METS firms.  When opening a 
mine, the initial investment is very big and it can only be recovered after many years of 
operation.  Therefore, their activity is not very flexible.  METS firms are more flexible.  
They could also have large fixed costs but this applies more to large multinationals which 
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therefore spread them across the different industries they serve reducing the risk associate 
with their activity.  Finally, mining firms produce mostly process innovation, while METS firms 
produce both new process and new products which then are sold to the mining companies 
which use them to improve their performance. 
 
Table 1.  Characteristics of mining and METS firms 

Characteristic Mining firm METS firms (Large) METS firms (SMEs) 

Size Large 
Large  

(horizontally diversified) 
Micro, small & medium 

Diversification 
Vertical 

(within the mining supply 
chain) 

Horizontal 
(across several industries) 

Horizontal 
(if any) 

Sunk costs 
Large 

(within the supply chain) 
Large  

(across different industries) 
Low 

Innovation type Process  Product & process Product & process  

 
Existing studies have shown several channels through which a price change could affect the 
decision to invest in innovation for other industries.  Canton and Uhlig (1999), Gomes et 
al. (2001) and Barlevy and Tsiddon (2006) find evidence of pro-cyclicality channels between 
prices and innovation in other industries.  These studies suggest that the pro-cyclicality can 
be direct or indirect, where the latter is typically through the access to finance for the firm.  
Conversely, Fatas (2000), Rafferty and Funk (2004), Barlevy (2007) and Geroski and 
Walters (1995) suggest that a counter-cyclical effect can arise from cost-reducing innovative 
effort. 
 
How would the pro-cyclical effect apply to the mining sector? An increase in mineral prices 
could directly stimulate innovation for the mining firms, which have more disposable income 
to invest in innovation.  A price increase also affects METS firms indirectly, as they 
experience a higher demand for their products/services from mining firms.  Moreover, 
diversified METS firms may have stronger incentives to adapt technologies developed for 
other business. 
 
At the same time, an increase in price also increases the access to external finance of both 
types of firms, if financial markets discount future income will also be related to the new 
price.  Similarly, the increased access to finance could boost investment in innovation.  
Therefore, both direct and indirect effects point toward pro-cyclicality of innovation with 
respect to price. 
 
How would the counter-cyclical effect apply to the mining sector? A price decrease imposes 
cost reduction pressure on mining firms, which already operate with tight operating margins 
in many mining sites.  Cost-reducing technologies could be an effective way to avoid the 
closure of mines.  Similarly, mining companies may invest in exploration aiming to discover 
new deposits with higher grade, hence more cost-effective.  Either the cost-reducing or 
exploration related technologies can be produced in-house or sourced from METS firms.  
This implies a counter-cyclical effect, where innovation is boosted, for both mining and 
METS firms, in periods of low prices. 
 
The effect of a price decrease on the access to finance for firms is instead ambiguous.  
In the one hand, it definitely implies a reduced access to external private finance as the risk 
profile of these firms is now higher.  In the other hand, the bigger and more diversified firms 
could still rely on internal resources (for the case of big vertical integrated mining firms) or on 
revenues from other industries that they supply (for the case of big horizontally integrated 
METS).  Moreover, in mining specialized countries – e.g.  Chile, Australia or South Africa – 
the large mining companies and the sector as whole might be, arguably, too big to fail.  
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Policy-makers may have strong incentives to aid the sector troubled by decreasing prices 
and innovation financing is one valid option.   
 
We don’t know which of these effects will prevail.  Still, we can argue that the counter-
cyclical effect is more likely to occur for shorter term price variations.  Typically, a mining 
company can cross-subsidize activities in the short-term to iron out a price fluctuation 
expected to be temporary.  If the price variation is expected to be structural – i.e. of a longer 
term – companies may be limited to the counter-cyclical innovative actions they can 
undertake.  A similar logic applies to public financial support, although likely with a longer 
horizon.  In any case, we can expect the ambiguous effect is less likely in the longer cycles. 
 
Table 2 summarizes the channels just through which a commodity price change could affect 
the decision of both types of mining sector stakeholders to invest in innovation. 
 
Table 2.  Effect on innovation and access to finance of price change 

 Mining firms METS firms 

Price 
increase 

+ Innovation 
(+) more disposable income to invest in 

innovation 
 
(+) more access to external finance 

+ Innovation 
(+) more demand from mining industry  
(+) more incentives to adapt other technologies 

to mining  
(+) more access to external finance 

Price 
decrease 

? Innovation 
(–) less disposable income to invest in 

innovation 
(–) less access to external private finance 
(+) cost reduction and exploration pressure 
(+) more access to external public finance 

? Innovation 
(?) depends on mining industry demand  
 
(–) less incentives to adapt existing 

technologies  

 
We can formulate the main conclusions from the existing literature as four distinct 
hypotheses which we are going to test in this paper: 
 
H1a:  Higher prices generate higher disposable income (direct or indirect) that is invested to 
generate more (pro-cyclical) innovation; 
 
H1b:  Lower prices generate higher cost reduction and exploration pressure generating 
(counter-cyclical) innovation; 
 
H2:  Price shocks do not affect innovation unless they are perceived as structural (i.e. long 
lasting); 
 
H3:  As METS firms can adapt other sectors’ technologies to mining, they are more likely to 
innovate more and faster due to price variation than mining firms; and, 
 
H4:  Mining specialized countries have stronger incentives to have counter-cyclical 
innovation policies. 
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3 Data and methodology 
 
In this section, we present and discuss the data used in our analysis.  We then give an 
overview at the estimation methods used to study the relationship between commodity 
prices and innovation in the mining sector.   
 
We use the World Bank Metals and Minerals Price Index as a proxy for an average global 
commodity price.  This index weights the price of seven commodities – aluminum, copper, 
iron ore, lead, nickel, tin and zinc – traded in the London Metals Exchange, based on their 
world production shares.  All the prices are reported in 2010 USD.  The index is available 
from 1960 to 2017. 
 
One limitation of such an index is that countries differ in their mining activities.  Countries 
producing other mineral commodities than the seven minerals covered by the index or 
having a different weight of them, may react to other price variations than those captured by 
the index.  In order to partially address this issue, we rely on an alternative measure of metal 
commodities price as a robustness check.  In particular, we build a country-specific index 
using disaggregated commodity prices from the World Bank database3 and weighting them 
based on export shares for each country.  We extract data on commodity trade by country of 
origin from Feenstra et al. (2005).  These data are classified by SITC codes.  We were able 
to match SITC codes of export flows with products’ prices from the World Bank.  To see in 
details how we built the country-specific prices read Appendix A. 
 
Following Cuddington and Jerret (2008), we decompose the natural logarithm of the  
de-trended commodity price in cycles of different lengths:  long cycle4 (from 20 to 70 years), 
medium cycle (from 10 to 20 years), short cycle (from 5 to 10 years) and a residual 
component (less than 5 years).  Figure 3 plots the de-trended price index across and the 
different component cycles of the price index.  The long and medium cycles show a relatively 
smooth variation over time.  The short cycles exhibit more sharp fluctuation around the mean 
value.  The residual component exhibits the sharpest fluctuations and captures the short-
term variation of the price.  All these components sum to the value of the de-trended price 
index (the dash line). 
 
Being mineral output commodities, we can expect that an excess of demand to be 
transferred to prices only if there is no idle supply capacity.  In the short run, mineral supply 
will follow those demand fluctuations with the installed capacity limiting the effect on prices.  
In the long run, mining companies can also vary capacity by opening and closing mining 
sites without necessarily changing technology.  So, it is important to understand how the 
volume of supply behaves in order to fully capture how prices may affect the innovation 
decision.  For this purpose, we also collect information on mineral rents for each country 
from the World Bank Development Indicators.  Given that we want to include in each 
specification a general measure of mineral products volume, we deflate the mineral rents 
with the metals and mineral price index and create a mining quantity index based on the 
2010’s artificial volume. 
  

                                                
3 We use prices of aluminum, copper, lead, nickel, tin, zinc, coal, iron ore and precious metals.   
4 Often referred to, in the literature, as supercycle. 
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Figure 3.  De-trended metals and minerals price index, and different cycles components 

Source:  World Bank Metals and Minerals Price Index 

 
In this paper we use patents as a proxy for innovation.  A patent is a legal right that is 
granted for any device, substance, method or process that is new, inventive, and useful.  
Patents give the owner exclusive rights to commercially exploit the invention for a limited 
period of time.  In return for exclusive rights, patent applications must be published and must 
fully disclose the claimed invention.  As a result of this requirement, the body of patent 
literature reflects developments in science and technology.  Furthermore, patent data is rich 
in information adjacent to technology information, such as temporal, geographic and 
bibliographic data.  Through the extraction and analysis of data associated with patent 
applications, it is possible to measure aspects of invention and economic researchers have 
long used patent applications as a measure of inventive activity. 
 
Some recent studies have highlighted the rising importance for mining enterprises to use IP 
instruments – particularly patents – when they pursue an internationalization strategy 
(Francis, 2015; Daly et al, 2019; Blundi et al., 2019; Bravo-Ortega and Price, 2019).  They 
are often multinational companies operating in different countries and patents may help them 
secure their intellectual property across states and appropriate the knowledge embedded in 
new discoveries.  Outside the mining sector, using patents as a proxy for innovation is an 
established practice in the literature (Acs et al, 2002; Griliches, 1998; Jaffe and Trajtenberg, 
1999).  In doing so, we need to acknowledge all the limitations about this approach that 
several studies in the existing literature have extensively raised and addressed (Lerner and 
Seru, 2017).  In particular, we acknowledge that the innovation captured through patents is a 
fraction of the wider range of innovative activity that is happening in the field.   
 
Even if not all inventions are patented, it is largely agreed that a patent embodies an original 
result of an R&D activity undertaken by an entity.  As a result, patent data are highly 
correlated with R&D expenditures in the mining sector (Figure 4).  In addition, patents offer 
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full coverage of both application countries and years.  Therefore, they are more suitable for a 
global study of mining innovation as this is intended to be.  The rest of the paper uses patent 
data as a direct measure of innovation activity in the mining sector. 
 
Another challenge when using patent data is the lag between this variable and R&D 
activities.  The real lag between R&D expenditures and patents has been the subject of 
multiple studies (Hall et al., 1984, Gurmu and Pérez-Sebastián, 2008).  These studies find 
relatively contemporaneous effects between the two variables, which justifies the use of 
patent as a proxy for the R&D expenditures at the firm level.  We follow this approach by 
using a minimum lag between these two. 
 
Figure 4.  Number of patent families and R&D expenditure in the mining sector  

 
Source:  WIPO Mining Database (2018) and OECD Business enterprise R&D expenditure by industry Database 

 
In the rest of the paper the basic unit of analysis will be the patent family, the year will refer 
to the first filing year of the patent family and for the country we will use the country of origin.  
A patent family refers to all those patents applied in different jurisdictions for the same 
invention5.  
 
Figure 5 shows the evolution over time of the number of mining patent families.  There is a 
clear increase over time with an exponential peak after the beginning of the 21st century.  
This peak relates to a global overall increase in patenting (WIPO, 2011, 2017).  This is 
partially due to the appearance of China as a leader economy around that time.  The overall 
number of Chinese patents – including mining patents – has steadily increased since then.  
Nowadays, China is a top patent filing country, second only to U.S.  However, the mining 
patents represent an increasing share of total patent families, which suggests a faster mining 
technological change than average in the last decade.  This contrasts with the slower pace 
of mining innovation in the early nineties. 
  

                                                
5 For all details about how we built the patent data, including patent family unique identifier and origin, refer to 
Daly (2019). 
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Figure 5.  Number of mining patent families and share of mining patent families over total 
patent families 

 
Source:  WIPO Mining Database (2018) 

 
In addition, we also make use of the mineral rents as a percentage of GDP as measure of 
the mining specialization a given economy.  Figure 6 shows the mining specialization of 
selected countries displaying their percentage of mining rents over GDP.  Countries like 
Chile, Australia and South Africa have mining rents representing a large share of the GDP, 
which is more than nine percent for the case of Chile.  These countries are considered to be 
more specialized in the mining sector as their income relies considerably on mining activity.  
On the other hand, countries like France, Japan or South Korea derive only a very minimal, 
close to zero, portion of their GDP from pure mining activities.  By definition, countries more 
specialized in the mining sector have a large portion of their economy relying on these 
mining rents, making them more exposed to the price fluctuations of minerals and metals.  
Therefore, we interpret this indicator as a proxy of the country exposure to the mining 
industry. 
 
This doesn’t mean that those countries do not play any role for the mining sector.  As Figure 
7 shows, the countries with less exposure to the mining industry are oriented more towards 
METS firms’ activities rather than mining firms’ activities6. On the other hand, countries that 
are more exposed to mining are also more specialized in mining firms’ innovation.  From the 
same figure we can discern that innovation in the “traditional” mining fields such as 
exploration and blasting is more concentrated in mining firms, while most of the services for 
the sector (environment, transport and to some extent also metallurgy) are developed by 
METS firms. 
 

                                                
6 To build this graph we calculated the relative specialization index (RSI), by country and technology for METS 
and mining firms’ innovation.  Positive RSIs mean that the country, within the pool of mining innovation, has 
relatively more innovation carried out by mining firms rather than METS compared to the world average.  For the 
technology the interpretation is similar: it means that innovation in that technological field is, on average, carried 
out more by mining firms rather than METS. 
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Figure 6.  Country exposure to mining sector rents 

 
Source:  World Bank Development Indicators.  Note:  This graph has been constructed using the average mining rents over 
GDP for each country in the period 1970-2015. 

 
Figure 7.  Mining and METS firms innovation relative specialization, by country and mining 
technology  

 
Source:  WIPO Mining Database.  Note:  indicator reflects the relative specialization index (RSI) based patent portfolios of 
METS and mining firms broken down by country and technological field. 

 
Figure 8 shows the evolution over time of the de-trended mining commodity price, quantity 
index and patents.  Overall, there seems to be a strong positive correlation among these 
three indices.  To better understand how expectations might be formed in the short and long 
run and what drives the observed correlation, we decompose each of these variables in the 
above-mentioned three cycles (Figure 9).  A strong positive correlation is present for the long 
cycle for all the three variables, although innovation seems to lag slightly.  In the medium 
cycle, innovation seems to be correlated with price but much less than before.  For the short 
cycle components, changes in prices seem to affect innovation in the early years of our 
panel but not so much in more recent ones where innovation remains relatively flat.  
Moreover, both innovation and quantity short cycles are in sync. 
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Figure 8.  Mining price, quantity and innovation co-evolution (1960-2015) 

 
Source:  World Bank Development Indicators and WIPO Mining Database.  Notes:  all indicators are in logs and de-trended. 

 
 
Figure 9.  Mining price, quantity and innovation cycle decomposition (1960-2015) 

 

 

 
Source:  World Bank Development Indicators and WIPO Mining Database.  Notes:  all indicators are in logs and de-trended. 
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Model specification 
 
We test the hypotheses discussed in the previous section in two main frameworks.  First, we 
make use of a time series estimation for the global mining activity.  Our baseline 
specification is the following:   

𝐼𝑡 = 𝜷𝑷𝒕−𝟏 + 𝜗𝐷𝑡−2 + 𝜀𝑡      (1) 
 
where I represents global innovation at time t, as measured by the number of mining patents 
filed in a given year; P is the commodity price and D the demand for mineral products.  They 

are respectively lagged by one and two periods7. The coefficient of interest is 𝜷.  A positive 
𝜷 would suggest evidence of cyclicality validating hypothesis H1a, while if 𝜷 is negative we 
fall into counter-cyclicality in accordance with hypothesis H1b. 
 
Then, we substitute Pt by the different cycle components:  
 

𝐼𝑡 = 𝜷𝟏𝒍𝒄𝒕−𝟏 + 𝜷𝟐𝒎𝒄𝒕−𝟏 + 𝜷𝟑𝒔𝒄𝒕−𝟏 + 𝜷𝟒𝒓𝒄𝒕−𝟏 + 𝜗𝐷𝑡−2 + 𝜀𝑡   (2) 
 
where 𝒍𝒄𝒕, 𝒎𝒄𝒕, 𝒔𝒄𝒕and 𝒓𝒄𝒕 are respectively the long, medium, short and residual components 
of the price index.  Equation (2) helps us disentangle the real channel of transmission of the 
effect of the price on innovation identifying which components play the biggest role in this.  
Positive 𝜷𝒄 validates H1a, while negative ones play in favor of H1b.  We expect 𝜷𝟏 to be 

larger than 𝜷𝟐 and 𝜷𝟑 to confirm H2.  In addition to revisiting hypotheses H1a, H1b and H2, 
this second framework allows to investigate H3, using as a dependent variable (𝐼𝑡) the 
number of mining patents for each technology category and subsector within mining8. 
 
We then move to a panel estimation for the third framework by adding the country dimension i: 
 

𝐼𝑖,𝑡 = 𝛼∆𝑀𝑖,𝑡 + 𝛽𝑃𝑖,𝑡−1 + 𝜸(𝑷𝒊,𝒕−𝟏∆𝑴𝒊,𝒕) + 𝜗𝐷𝑡−2 + 𝜇𝑖 + 𝜀𝑖,𝑡   (3) 

 
When we substitute the different cycle components, (3) turns into:  
 

𝐼𝑖,𝑡 = 𝛼∆𝑀𝑖,𝑡 + 𝛽1𝑙𝑐𝑖,𝑡−1 + 𝜸𝟏 (𝒍𝒄𝑖,𝒕−𝟏∆𝑴𝒊,𝒕) + 𝛽2𝑚𝑐𝑖,𝑡−1 + 𝜸𝟐 (𝒎𝒄𝑖,𝒕−𝟏∆𝑴𝒊,𝒕) + 𝛽3𝑠𝑐𝑖,𝑡−1 +

            𝜸𝟑 (𝒔𝒄𝑖,𝒕−𝟏∆𝑴𝒊,𝒕) + 𝛽4𝑟𝑐𝑖,𝑡−1 + 𝜸𝟒 (𝒓𝒄𝑖,𝒕−𝟏∆𝑴𝒊,𝒕) + 𝜗𝐷𝑡−2 + 𝜇𝑖 + 𝜀𝑖,𝑡  (4) 

 
In both (3) and (4), ∆𝑀𝑖,𝑡 captures the exposure of a country to the mining sector.  We also 

add country specific fixed effects 𝜇𝑖 in these specifications, in order to capture country 
specific idiosyncrasies, which are invariant over time. 
 
In addition to revisiting hypotheses H1a, H1b and H2, this third framework allows to 

investigate H4.  The coefficient 𝜸 captures whether the innovation of a country which is more 
exposed to the mining sector reacts more (if positive) or less (if negative) to changes in 
commodity prices. 
 
Table 3 presents a summary of descriptive statistics of the variables used for the time series 
specification, either in their simple form or with the different mining categories, and the panel 
specification9. For the time series specification, we observe a big variation of both number of 
patents and the price index across the years under consideration.  In a great extent, this 

                                                
7 To test the optimal lag period for the regressors we ran some correlation tests.  Please see Appendix X for 
more details. 
8 Innovation in the mining sector focuses on the following fields (for a detailed description on how these 
categories are obtained refer to Daly (2019)):  exploration, blasting, environment, processing, mining, transport, 
refining and metallurgy.  These categories do not come in a sequential order as some of them may take place at 
different stages of the mine’s life, for example transport or environmental innovation. 
9 Data refers to the time period 1970-2015. 
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variation accounts for the positive time trend observed in all three main indicators, which 
supports removing the trend in our econometric analysis.  For the different mining categories 
specification, we observe that distribution of patents across categories is quite unbalanced:  
they are mostly concentrated in the mining, exploration, refining and environmental 
categories.  Finally, METS firms file a much larger amount of mining patents compared to 
mining firms. 
 
The divergence of patenting behavior is also apparent across countries.  When we move to 
the panel specification, we find country-year observations ranging from only one mining 
patent to more than 30,000.  Following a similar trend, there are countries for which mining 
activity represents a negligible part of their GDP, while in other countries this percentage 
goes up to more than 20 percent, like in Chile. 
 
Table 3.  Descriptive statistics of main variables 

Variable Obs Unit of measure Mean Std.  Dev.   Min Max 

Time series specification 

Mining patents  46 Number of patents 14868.8 10829.5 5658 48774 

Price Index 46 2010 = 100 47.73 26.29 16.46 113.49 

Mining quantity index 46 2010 = 100 45.39     27.30  20.26  108.24 

Mining Categories Specification 

Patents of mining cat.   46 Number of patents 5296.67 3672.59 1749 16976 

Patents of blasting cat. 46 Number of patents 78.00 54.49 26 235 

Patents of environmental cat. 46 Number of patents 1611.17 1386.21 491 5714 

Patents of exploration cat. 46 Number of patents 3301.04 3121.29 1013 13213 

Patents of metallurgy cat. 46 Number of patents 159.46 83.47 84 489 

Patents of processing cat. 46 Number of patents 594.04 595.26 131 2858 

Patents of refining cat. 46 Number of patents 3173.67 1240.71 2021 6789 

Patents of transport cat. 46 Number of patents 789.80 830.07 218 3387 

Mining vs.  METS Specification* 

Mining firm patents 46 Number of patents 387.13 467.85 64 1839 

METS firm patents 46 Number of patents 4249.46 6443.97 123 25008 

Panel Specification 

Mining patents (by origin country) 1505 Number of patents 380.70 1974.21 1 37163 

Price Index 1505 2010 = 100 53.96 28.30 16.46 113.49 

Mining quantity index 1505 2010 = 100 166.63 549.99 .1175 10933.4 

Mining rent as % of GDP 1505 Percentage 0.82 2.06 0 20.95 
Source:  World Bank Development Indicators and WIPO Mining Database.  Notes:  (*) figures are based on a subsample of 
mining patents for which the applicant’s sector can be identified. 
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4 Results 
 
Table 4 reports the test for equations (1) (first column) and (2) (second column).  It finds a 
positive and significant effect of both commodity prices and quantity on mining innovation 
validating hypothesis H1a.  This implies that high commodity prices, as well as high demand 
for mining products, boost innovation in the sector. 
 
If we look more specifically at different price cycles (second column), we realize that the 
price effect is mainly driven by variations in the long cycle components which confirms 
hypothesis H2.  Shorter term components are found not to have any effect on mining 
innovation10. 
 
Table 4:  Time series estimation 

 Dependent Variable:  Log.  of mining patents applications worldwide 
(1) (2) 

Log.  of Price Index 0.357*** -- 
(1st Lag) (0.109)  

Long cycle component of -- 1.107*** 
Log.  of Price Index (1st Lag)  (0.105) 

Medium cycle component of -- 0.557 
Log.  of Price Index (1st Lag)  (0.150) 

Short cycle component of -- 0.167 
Log.  of Price Index (1st Lag)  (0.188) 

Residual cycle component of -- -0.218 
Log.  of Price Index (1st Lag)  (0.237) 

Log.  of mining quantity 0.523*** 0.202*** 
(2nd Lag) (0.073) (0.053) 

   
Observations 44 44 
Years 1970-2016 1970-2016 
R-squared 0.72 0.85 

Notes:  The model is estimated with the OLS estimator.  The dependent variable is included in logarithmic terms.  All variables 
included in the model are detrended.  A constant is included in each specification.  Robust standard errors in parentheses.  *, ** 
and *** respectively denote significance at 10%, 5% and 1% levels. 

 
Tables 5a and 5b replicate the analysis in Table 4 using as a dependent variable a mining 
sub-category, instead of the full sample of mining patents.  We still find an overall pro-
cyclical effect of price changes on mining innovation (see Table 5a) as predicted by H1a.  
H2 is confirmed, also in this sub-category scenario, in Table 5b.  The effect of long cycle 
price shocks on mining innovation is positive and significant for almost all sub-categories.  
Only environmental mining patents seem less responsive suggesting that other factors may 
play a bigger role in explaining them, for example environmental regulation as is discussed 
in Andersen and Noailly (forthcoming).  We find mixed evidence for H3 as the core mining 
technologies, namely blasting and exploration (see Figure 5) are among the slower and 
faster subcategories to react to price shocks, respectively. 
 
  

                                                
10 We tried to add to the regressors the squared value of the residual component of the price but it did not change 
the results so we decided to omit it.  Appendix B presents all tables with the squared residual component of the 
price cycle.   
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Table 5a:  Time series estimation, different mining categories 
 Blasting Environment Exploration Metallurgy Mining Processing Refining Transport 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Log.  of Price Index 
(1st Lag)  

0.095 
(0.100) 

0.149* 
(0.079) 

0.345*** 
(0.127) 

0.053 
(0.120) 

0.508** 
(0.137) 

0.448*** 
(0.143) 

0.219** 
(0.086) 

0.491*** 
(0.139) 

Log.  of mining quantity  
(2nd Lag) 

0.139** 
(0.062) 

0.490*** 
(0.049) 

0.582*** 
(0.079) 

0.358*** 
(0.075) 

0.439*** 
(0.085) 

0.472*** 
(0.089) 

0.485*** 
(0.054) 

0.757*** 
(0.087) 

Observations 44 44 44 44 44 44 44 44 
Years 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 
R-squared 0.18 0.77 0.69 0.41 0.62 0.60 0.76 0.77 

Notes:  The model is estimated with the seemingly unrelated estimator (SUR).  The dependent variable is included in 
logarithmic terms.  All variables included in the model are detrended.  A constant is included in each specification.  Robust 
standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

 
 
Table 5b:  Time series estimation, different mining categories 

 Blasting Environment Exploration Metallurgy Mining Processing Refining Transport 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Long cycle of Log.  of Price 
Index (1st Lag)  

0.397** 
(0.170) 

0.232* 
(0.141) 

1.320*** 
(0.143) 

0.591*** 
(0.187) 

1.513*** 
(0.176) 

1.302*** 
(0.211) 

0.591*** 
(0.140) 

1.421*** 
(0.191) 

Medium cycle of Log.  of 
Price Index (1st Lag) 

0.059 
(0.173) 

0.174 
(0.143) 

-0.224 
(0.146) 

-0.363* 
(0.190) 

0.127 
(0.179) 

0.256 
(0.215) 

0.178 
(0.143) 

0.147 
(0.195) 

Short cycle of Log.  of 
Price Index (1st Lag) 

0.086 
(0.182) 

0.215 
(0.151) 

0.248 
(0.154) 

0.202 
(0.200) 

0.146 
(0.188) 

0.094 
(0.226) 

0.079 
(0.150) 

0.236 
(0.205) 

Residual cycle of Log.  of 
Price Index (1st Lag) 

-0.406* 
(0.237) 

-0.171 
(0.196) 

-0.321 
(0.200) 

-0.463* 
(0.260) 

-0.124 
(0.244) 

-0.259 
(0.293) 

-0.196 
(0.195) 

-0.246 
(0.266) 

Log.  of mining quantity  
(2nd Lag) 

-0.035 
(0.087) 

0.414*** 
(0.072) 

0.188*** 
(0.073) 

0.127 
(0.095) 

0.026 
(0.090) 

0.087 
(0.108) 

0.299*** 
(0.071) 

0.352*** 
(0.078) 

Observations 44 44 44 44 44 44 44 44 
Years 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 
R-squared 0.30 0.79 0.89 0.58 0.82 0.74 0.81 0.87 

Notes:  The model is estimated with the seemingly unrelated estimator (SUR).  The dependent variable is included in 
logarithmic terms.  All variables included in the model are detrended.  A constant is included in each specification.  Robust 
standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

 
We also explore how mining and METS firms react to commodity price changes.  In this 
exercise our sample shrinks because we are only able to categorize firms appearing in 
Bureau Van Dijk’s Orbis database under specific NACE Rev.2 codes11.  We consider their 
mining patents as dependent variables and we run a similar analysis to the one carried out 
before.  In Table 6 we report the same set of estimation run on two different samples:  only 
mining firms’ innovation (first and third columns) and only METS firms’ innovation (second 
and forth columns).  Only the innovation from METS firms seem to react to price changes; 
while we don’t find any significant effect of prices on innovation from mining firms.  This 
points toward the validation of H3. 
 
Nevertheless, this could also be explained by the high rate of technology outsourcing which 
we observe in the mining industry.  Given that most of the time mining firms prefer to acquire 
technology from the specialized suppliers rather than producing it in house, METS firms will 
be the ones absorbing the price variations and adapting their innovation accordingly.  This 
may also explain why we do not observe an effect of price on patents in the shorter periods.  
Mining firms are the ones directly exposed to the price variations.  Therefore, it will take 
some time for this effect to be transferred to METS firms, which will then adapt their 
innovation decisions accordingly. 
  

                                                
11 We classify mining firms as those companies operating in NACE sectors: 0500, 0510, 0520, 0700, 0710, 0720, 
0729, 0721, 0811, 0812, 0891, 0892 and 0899; and we categorize METS firms as those companies operating in 
sectors: 2892, 2822, 0990 and 0910. 
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Table 6:  Time series estimation, mining vs METS firms 
 Dependent Variable:  Log.  of mining patents applications worldwide 

Mining firms METS Mining firms METS 
(1) (2) (3) (4) 

Log.  of Price Index -0.032 0.708*** -- -- 
(1st Lag) (0.143) (0.229)   

Long cycle component of -- -- -0.139 1.260*** 
Log.  of Price Index (1st Lag)   (0.259) (0.391) 

Medium cycle component of -- -- 0.124 1.047*** 
Log.  of Price Index (1st Lag)   (0.263) (0.398) 

Short cycle component of -- -- 0.120 -0.199 
Log.  of Price Index (1st Lag)   (0.277) (0.419) 

Residual cycle component of -- -- -0.368 0.518 
Log.  of Price Index (1st Lag)   (0.360) (0.544) 

Log.  of mining quantity 0.766*** 0.290** 0.744*** 0.046 
(2nd Lag) (0.089) (0.143) (0.132) (0.200) 

Observations 44 44 44 44 
Years 1970-2016 1970-2016 1970-2016 1970-2016 
R-squared 0.67 0.36 0.69 0.45 

Notes:  The model is estimated with the seemingly unrelated estimator (SUR).  The dependent variable is included in 
logarithmic terms.  All variables included in the model are detrended.  A constant is included in each specification.  Robust 
standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

 
 
Table 7:  Panel estimation 

 Dependent Variable:  Log.  of mining patents by applicant country 
(1a) (1b) (2a) (2b) 

Log.  of Price Index 0.177*** 0.191** -- -- 
(1st Lag) (0.064) (0.076)   

Mining rent as % -- 0.045* -- 0.014 
of GDP  (0.024)  (0.026) 

Price Index x Mining  -- -0.065*** -- -- 
rent as % of GDP  (0.017)   

Long cycle of log.  of -- -- 0.396*** 0.278** 
Price Index (1st Lag)   (0.126) (0.139) 

LC # Mining rent  -- -- -- 0.196*** 
As % of GDP    (0.065) 

Medium cycle of log.  of -- -- 0.069 0.247* 
Price Index (1st Lag)   (0.139) (0.126) 

MC # Mining rent  -- -- -- -0.313*** 
As % of GDP    (0.061) 

Short cycle of log.  of -- -- 0.006 0.029 
Price Index (1st Lag)   (0.096) (0.108) 

SC # Mining rent  -- -- -- -0.069*** 
as % of GDP    (0.020) 

Residual cycle of log.  of -- -- -0.157 -0.141 
Price Index (1st Lag)   (0.143) (0.149) 

RC # Mining rent  -- -- -- 0.022 
As % of GDP    (0.028) 

Log.  of mining  0.026 0.020 -0.002 0.001 
quantity (2nd Lag) (0.018) (0.017) (0.017) (0.017) 

Observations 1505 1505 1505 1505 
No. Countries 54 54 54 54 
Years 1970-2016 1970-2016 1970-2016 1970-2016 

Notes:  The model is estimated with the Fixed-effects estimator.  The dependent variable is included in logarithmic terms.  
All variables included in the model are detrended.  Country fixed-effects and a constant are included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

  



19 
 

Table 7 and 8 show the results for the panel specifications reported in the third (columns 1a 
and 1b) and fourth (columns 2a and 2b) equations, respectively, with the aggregate price 
index and with country-specific prices.  The two specifications evolve quite similarly showing 
that the use of a World Price Index does not distort findings compared to a country-specific 
one.  We tried the simple regression (columns a) and we then add the country exposure to 
the mining sector and the interaction term between the price and the country exposure 
(columns b). 
 
Table 8:  Panel estimation, using country-specific price index 

Dependent Variable:  Log. of mining patents by applicant country 

 (1a) (1b) (2a) (2b) 

Log. of Price Index 0.083** 0.086** -- -- 
(1st Lag) (0.034) (0.034)   

Mining rent as % -- 0.044 -- 0.049 
of GDP  (0.039)  (0.047) 

Price Index # Mining rent  -- -0.025 -- -- 
as % of GDP  (0.022)   

Long cycle component of -- -- 0.318*** 0.302** 
log. of Price Index (1st Lag)   (0.113) (0.121) 

LC # Mining rent  -- -- -- 0.013 
As % of GDP    (0.033) 

Medium cycle component of -- -- 0.016 0.102 
log. of Price Index (1st Lag)   (0.055) (0.063) 

MC # Mining rent  -- -- -- -0.142** 
As % of GDP    (0.068) 

Short cycle component of -- -- 0.018 0.038 
log. of Price Index (1st Lag)   (0.040) (0.043) 

SC # Mining rent  -- -- -- -0.041 
As % of GDP    (0.029) 

Residual cycle component of -- -- 0.022 -0.016 
log. of Price Index (1st Lag)   (0.080) (0.085) 

RC # Mining rent  -- -- -- 0.045 
As % of GDP    (0.041) 

Log. of mining 0.020 0.012 0.009 -0.001 
quantity (2nd Lag) (0.019) (0.019) (0.020) (0.020) 

Observations 1063 1063 1063 1063 
No. Countries 39 39 39 39 
Years 1970-2016 1970-2016 1970-2016 1970-2016 
Notes:  The model is estimated with the Fixed-effects estimator.  The dependent variable is included in logarithmic terms.  
All variables included in the model are detrended.  Country fixed-effects and a constant are included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

 
Mining prices maintain a positive effect on mining innovation (as predicted by H1a), which is 
mostly capturing the long cycle component.  The only main difference with the time-series 
specification is that the mining demand loses its significance, which is probably due to the 
country-fixed effects.  The country exposure to the mining sector (measured by mining rents 
as a percentage of GDP) is found to have a positive effect on innovation only for the case of 
country-invariant price index (Table 7), although only statistically significant at ten percent.  
It is found non-significant for the country-specific price index (Table 8).  Therefore, more 
exposed countries will, on average, innovate more in mining technologies than non-mining 
ones.  The interaction between the price effect and exposure to the mining sector is found to 
be negative and significant in Table 7, while it loses its significance in Table 8.  This means 
that less-exposed countries will be the ones that react more to price changes.  
An explanation for this could be found in the fact that METS companies, which are among 
the top innovators, are not necessarily located in mining countries (see Figure 5).  They can 
develop their technology in their home country and then sell it to mining firms operating in 
other countries. 
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If we have a closer look at this phenomenon introducing the distinction across price cycles 
(second columns), we confirm what has been found before:  the long cycle component of 
price is found to influence positively the innovation rate confirming again H2.  In addition 
through the introduction of the interaction term, we find that mining countries react more to 
price changes in the long cycles (see Figure 10:  the higher the exposure of a country to the 
mining sector the bigger will be the reaction of innovation to price changes), while non-
mining ones react more on the medium and short-term (see Figures 11 and 12:  the lower 
the exposure of a country to the mining sector the bigger will be the reaction of its innovation 
to price changes; for countries which are very exposed to the mining activity an increase in 
commodity price in the medium and short-term will have counter-cyclical effects on 
innovation).  Mining countries are slower to absorb the price effect, compared to METS 
countries, which mostly affects them in the long run.  This confirms our idea that mining firms 
are on average less flexible than METS firms in adapting to price changes.  There is 
therefore a need for highly-dependent mining countries to implement counter-cyclical 
policies able to defeat the negative effects of commodities down cycles, as anticipated in 
hypothesis H4.  The fact that these countries rely extensively on mining rents makes them 
particularly vulnerable to commodity price depression, jeopardizing their ability to remain 
competitive in the market.  This condition affects METS countries less, which rely only 
marginally on mining activity.  Their diversification becomes a strong attribute in periods of 
low prices. 
 
Figure 10.  Average marginal effect of long cycle component of price index on innovation 
with 95% confidence intervals  
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Figure 11.  Average marginal effect of medium cycle component of price index on innovation 
with 95% confidence intervals 

 
 
 
Figure 12.  Average marginal effect of short cycle component of price index on innovation 
with 95% confidence intervals 
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5 Concluding remarks 
 
In this paper we studied the relation between economic cycles and innovation in the mining 
sector.  In particular, we exploited how the business cycle of this sector is tied in with mining 
commodity price fluctuation.  In doing so, we focus on the impact of mineral and metal price 
changes on the sector’s innovation. 
 
We discussed the transmission mechanisms based on the adaptation of the existing 
literature on the cyclicality of innovation to the singularities of the mining sector.  We 
hypothesized a pro-cyclical impact if the transmission is based on higher prices generating 
higher direct or indirect disposable income that is in turn invested in innovation; and, a 
counter-cyclical impact if lower prices increase the pressure to reduce cost and increase 
efficiency through new technologies.  We also conjectured that price variation is more likely 
to affect innovation if perceived as long-lasting shocks, if innovators are more technologically 
diversified and if countries are more specialized in mining. 
 
To test these hypotheses, we relied on novel mining innovation data for the period 1970-2015 
based on patent information and a series of economic indicators related to the mining sector 
based on data from the World Bank.  We conducted the econometric analyses using both time 
series and panel data.  Our main contribution was to disentangle the effects of price cycles of 
different lengths, namely long-term, medium-term, short-term and residual.  To identify them 
we used the Christian and Fitzgerald’s band-pass filter and isolated four components of the 
price. 
 
Our setting attempted to circumvent several identification issues.  We accounted for the time 
lag between changes in demand, commodity prices and innovation.  To establish the optimal 
lag between these variables, we ran a series of correlation tests.  We identified the price 
cycles using the Christian and Fitzgerald band-pass filter as in Cuddington and Jerret (2008).  
Complementary robustness checks included tests for country-specific mineral and metal price 
index; the removal of countries whose economies are highly relying on the mining sector; and, 
the addition of the squared residual price cycle component to control for price instability.   
 
Overall, we found that mining innovation is pro-cyclical, increasing in periods of commodity 
price boom and slowing down during recessions.  We found little evidence of counter-cyclical 
innovation.  It is worth noting that these two mechanisms may co-exist.  Hence, a stronger 
pro-cyclical effect may be hiding a weaker counter-cyclical one.  Our model cannot resolve 
this question, but it does indicate that if a counter-cyclical effect exists it is weaker than the 
pro-cyclical one in most of our estimations. 
 
We found consistent empirical evidence on long price cycles affecting mining innovation 
more than shorter ones.  Indeed, most of the pro-cyclical effect is related to the long-cycle 
component of the price variation.  This is coherent with the long decision-making timeline 
associated with the mining sector, where a bulk of the technological changes happen when 
mines are opened or closed.   
 
We also found evidence that the transmission of the pro-cyclical effect happens indirectly 
through the METS firms.  When comparing mining and METS firms, we found that only 
METS firms were responsive to adapt their innovation to price changes.  Moreover, the 
estimations indicate that METS are more responsive and faster to adapt their innovation to 
price changes than the industry average.   
 
According to our estimations, economies specializing in mining produce more mining 
innovation, but they are also less reactive to price changes.  Nevertheless, this behavior 
varies substantially across the length of price cycles.  More specialized economies react 
even more pro-cyclically to changes of the long cycle component of price than more 
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diversified ones.  Conversely, highly specialized economies may observe counter-cyclical 
responses to medium and short cycle components, while diversified economies may observe 
pro-cyclical responses also for the medium cycle component.   
 
These results indicate that mining dependent economies put in place counter-cyclical 
measures based on innovation to cope with shorter term downturns of the business cycle.  
It also means that, in the upturn, they are less reactive than more diversified economies.  
The latter are likely to have innovation systems also more technologically diversified 
composed by innovative METS firms able to adapt new technologies to the mining sector. 
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Appendices 
 
A – Building country-specific prices  
 
We extract the data on commodity trade by country of origin for export and import from 
Feenstra et al. (2005) data (https://atlas.media.mit.edu/en/resources/data/).  All of the 
product data shown on the site is classified using SITC (Standard International Trade 
Classification).  For historical SITC classification data (1962 - 2000), we use data from 
The Center for International Data.  For more recent data (2001 - 2014), we use data 
provided by UN COMTRADE. 
 
We calculated the top materials exported globally: 
 

SITC 

Exports 

(bn US) 

3222 1,220 

2815 919 

2820 561 

2871 510 

2882 422 

2873 259 

2816 248 

2879 186 

2890 172 

2872 150 

3232 141 

2875 123 

2881 72.8 

3221 70.3 

2874 65.7 

2877 57.1 

3224 19.6 

3223 14.4 

2876 14.0 

2860 11.9 

3231 5.87 

2814 5.15 

 
The top SITC codes are Coal (3222), Iron Ore (2815 and 2816), Scrap or iron ore (2820), 
Copper (2871), Other non-ferrous metal waste and scrap (2882), Aluminum (2873), Ores 
and concentrates of other non-ferrous base metals (2879), Ores and concentrates of 
precious metals, waste, scrap (2890), Nickel (2872), Coke(3232). 
 
We proxy all the Iron ore derivative prices (2814, 2815, 2816) with Iron ore spot prices from 
the World Bank.  All coal derivatives (3221, 3222, 3223, 3224, 3231, 3232) are proxied with 
the cooking coal prices from Cohen et al.   (2018) 12.  For the precious metals (2890) we take 
an average of the price of gold, platinum and silver from the World Bank.  For Nickel (2872), 
Copper (2871), Aluminum (2873), Lead (2874), Zinc (2875) and Tin (2876) we use prices 

                                                
12 Note that in that paper there are country specific coal prices.  But since we want to build a general country 
index, we decided to take US prices of coking coal and then build the index with them.  The coking coal data is 
only available from 1978 to 2015 so we will restrict our time frame from that year on until 2015 included.  The 
right cut is not a problem since trade data is only available up to 2014 and also patent data in 2016-2017 are not 
reliable due to incomplete data.    
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from World Bank.  For the rest (2820, 2860, 2877, 2879, 2881, 2882) we use the World Bank 
aggregated metal index.  The metals and minerals price at time t for country c is calculated 

as 𝑝𝑡
𝑐 = ∑ 𝑝𝑘,𝑡𝑘  where 𝑘 ∈ Aluminium, Copper, Lead, Nickel, Tin, Zinc, Coal, Iron Ore, 

Precious Metals, Others.  All prices are expressed in real/constant 2010 USD. 
 
In this sample, there are 124 territories with incomplete panels when we consider country 
price WB:  

AD BA BY DM GM KE LR MM NP SA SY UA VU 

AE BB BZ EE GN KG LS MN NR SC SZ UG WS 

AF BD CD ET GP KH LT MO OM SD TC UM YE 

AG BF CF FK GQ KI LU MP PF SH TD UY ZW 

AI BJ CK GA GU KN LV MQ PG SI TJ UZ   

AM BM CM GD HN KP LY MR PN SK TK VA   

AO BN CR GE HR KW MD MS PY SL TN VC   

AS BS CU GF HT KY MH MU QA SM TO VE   

AW BV CV GH IQ KZ MK MW RE SO TT VG   

AZ BW CZ GI IR LA ML NA RU ST TW VN   

 
And 79 territories with complete panel:   

AL CA DO GT JM MY PE SR 

AR CG DZ GY JO MZ PH SV 

AT CH EC HK JP NC PK TG 

AU CI EG HU KR NE PL TH 

BE CL ES ID LB NG PT TR 

BG CN FI IE LK NI RO TZ 

BH CO FJ IL MA NL RW US 

BI CY FR IN MG NO SE ZA 

BO DE GB IS MT NZ SG ZM 

BR DK GR IT MX PA SN   

 
We decided to only keep the territories with complete panels. 
 
B - Adding squared residual components of price 
 
Here we replicate the main tables introducing the squared residual component of price cycle.  
Results do not vary much and this variable is, most of the time, insignificant.  It is only 
significant, but with a negative sign, for the blasting category in Table B3 and, with a positive 
sign, in the panel estimation using country-specific price index.  In the latter case this 
indicates that mining innovation tends to react more to periods of high variation compared to 
relatively stable periods. 
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Table B1:  Time series estimation 
 Dependent Variable:  Log.  of mining patents applications worldwide  

(1) (2) 

Long cycle component of 1.107*** 1.090*** 

Log.  of Price Index (1st Lag) (0.105) (0.114) 

Medium cycle component of 0.557 0.004 

Log.  of Price Index (1st Lag) (0.150) (0.156) 

Short cycle component of 0.167 0.172 

Log.  of Price Index (1st Lag) (0.188) (0.189) 

Residual cycle component of -0.218 -0.166 

Log.  of Price Index (1st Lag) (0.237) (0.194) 

Squared of resid.  cycle comp.  of -- 0.574 

Log.  of Price Index (1st Lag)  (1.169) 

Log.  of Quantity Index 0.202*** 0.208*** 

(2nd Lag) (0.053) (0.053) 

Observations 44 44 

Years 1970-2016 1970-2016 

R-squared 0.85 0.85 
Notes:  The model is estimated with the OLS estimator.  The dependent variable is included in logarithmic terms.  All variables 
included in the model are detrended.  A constant is included in each specification.  Robust standard errors in parentheses.  *, ** 
and *** respectively denote significance at 10%, 5% and 1% levels. 

 
Table B2:  Time series estimation, different mining categories 

 Blasting Environment Exploration Metallurgy Mining Processing Refining Transport 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Long cycle comp.  of Log.  of 

Price Index (1st Lag)  

0.452** 

(0.168) 

0.202 

(0.142) 

1.310*** 

(0.146) 

0.589*** 

(0.190) 

1.491*** 

(0.178) 

1.311*** 

(0.215) 

0.583*** 

(0.143) 

1.418*** 

(0.195) 

Medium cycle comp.  of Log.  of 

Price Index (1st Lag) 

0.096 

(0.169) 

0.154 

(0.142) 

-0.231 

(0.147) 

-0.365* 

(0.192) 

0.112 

(0.179) 

0.262 

(0.216) 

0.172 

(0.144) 

0.145 

(0.196) 

Short cycle comp.  of Log.  of 

Price Index (1st Lag) 

0.073 

(0.177) 

0.223 

(0.149) 

0.251 

(0.154) 

0.203 

(0.200) 

0.152 

(0.187) 

0.092 

(0.226) 

0.081 

(0.150) 

0.237 

(0.205) 

Residual cycle comp.  of Log.  of 

Price Index (1st Lag) 

-0.572** 

(0.249) 

-0.082 

(0.210) 

-0.289 

(0.216) 

-0.456 

(0.282) 

-0.058 

(0.264) 

-0.286 

(0.319) 

-0.169 

(0.211) 

-0.236 

(0.289) 

Squared of resid.  cycle comp.  of -1.864* 1.005 0.351 0.078 0.731 -0.298 0.301 0.108 

Log.  of Price Index (1st Lag) (1.087) (0.916) (0.945) (1.232) (1.152) (1.391) (0.923) (1.262) 

Log.  of Quantity Index (2nd Lag) -0.055 

(0.085) 

0.424*** 

(0.072) 

0.191*** 

(0.074) 

0.128 

(0.096) 

0.034 

(0.090) 

0.084 

(0.109) 

0.302*** 

(0.072) 

0.353*** 

(0.098) 

Observations 44 44 44 44 44 44 44 44 

Years 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 

R-squared 0.35 0.79 0.89 0.58 0.82 0.75 0.81 0.87 
Notes:  The model is estimated with the seemingly unrelated estimator (SUR).  The dependent variable is included in 
logarithmic terms.  All variables included in the model are detrended.  A constant is included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 
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Table B3:  Time series estimation, mining firms vs METS 
 Dependent Variable:  

Log.  of mining patents applications worldwide 

Mining firms METS Mining firms METS 

(1) (2) (3) (4) 

Long cycle component of -0.139 1.260*** -0.172 1.203*** 

Log.  of Price Index (1st Lag) (0.259) (0.391) (0.262) (0.396) 

Medium cycle component of 0.124 1.047*** 0.101 1.009*** 

Log.  of Price Index (1st Lag) (0.263) (0.398) (0.264) (0.399) 

Short cycle component of 0.120 -0.199 0.128 -0.185 

Log.  of Price Index (1st Lag) (0.277) (0.419) (0.276) (0.417) 

Residual cycle component of -0.368 0.518 -0.266 0.689 

Log.  of Price Index (1st Lag) (0.360) (0.544) (0.389) (0.587) 

Squared of resid.  cycle comp.  of -- -- 1.135 1.911 

Log.  of Price Index (1st Lag)   (1.699) (2.565) 

Log.  of Quantity Index 0.744*** 0.046 0.756*** 0.066 

(2nd Lag) (0.132) (0.200) (0.133) (0.200) 

Observations 44 44 44 44 

Years 1970-2016 1970-2016 1970-2016 1970-2016 

R-squared 0.69 0.45 0.69 0.45 
Notes:  The model is estimated with the seemingly unrelated estimator (SUR).  The dependent variable is included in 
logarithmic terms.  All variables included in the model are detrended.  A constant is included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

 
Table B4:  Panel estimation 

Dependent Variable:  Log.  of mining patents by applicant country 

(1) (2) (3) (4) 

Mining rent as % -- -- 0.014 0.013 

Of GDP   (0.026) (0.025) 

Long cycle component of 0.396*** 0.399*** 0.278** 0.283** 

Log.  of Price Index (1st Lag) (0.126) (0.126) (0.139) (0.137) 

LC # Mining rent  -- -- 0.196*** 0.196*** 

As % of GDP   (0.065) (0.065) 

Medium cycle component of 0.069 0.074 0.247* 0.254** 

Log.  of Price Index (1st Lag) (0.139) (0.136) (0.126) (0.125) 

MC # Mining rent  -- -- -0.313*** -0.313*** 

As % of GDP   (0.061) (0.061) 

Short cycle component of 0.006 0.002 0.029 0.025 

Log.  of Price Index (1st Lag) (0.096) (0.096) (0.108) (0.108) 

SC # Mining rent  -- -- -0.069*** -0.069*** 

As % of GDP   (0.020) (0.020) 

Residual cycle component of -0.157 -0.185 -0.141 -0.176 

Log.  of Price Index (1st Lag) (0.143) (0.161) (0.149) (0.160) 

RC # Mining rent  -- -- 0.022 0.018 

As % of GDP   (0.028) (0.029) 

Squared of resid.  cycle comp.  

of 

-- -0.246 -- -0.342 

Log.  of Price Index (1st Lag)  (0.496)  (0.537) 

Log.  of Quantity Index -0.002 -0.002 0.001 0.001 

(2nd Lag) (0.017) (0.017) (0.017) (0.017) 

Observations 1505 1505 1505 1505 

No.  Countries 54 54 54 54 

Years 1970-2016 1970-2016 1970-2016 1970-2016 
Notes:  The model is estimated with the Fixed-effects estimator.  The dependent variable is included in logarithmic terms.  
All variables included in the model are detrended.  Country fixed-effects and a constant are included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 
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Table B5:  Panel estimation, using country-specific price index 
Dependent Variable:  Log. of mining patents by applicant country 

 (1) (2) (3) (4) 

Mining rent as % -- -- 0.049 0.046 

of GDP   (0.047) (0.048) 

Long cycle component of 0.318*** 0.310*** 0.302** 0.302** 

Log.  of Price Index (1st Lag) (0.113) (0.113) (0.121) (0.121) 

LC # Mining rent  -- -- 0.013 0.002 

As % of GDP   (0.033) (0.032) 

Medium cycle component of 0.016 0.019 0.102 0.105 

Log.  of Price Index (1st Lag) (0.055) (0.055) (0.063) (0.062) 

MC # Mining rent  -- -- -0.142** -0.140** 

As % of GDP   (0.068) (0.068) 

Short cycle component of 0.018 0.028 0.038 0.044 

Log.  of Price Index (1st Lag) (0.040) (0.040) (0.043) (0.043) 

SC # Mining rent  -- -- -0.041 -0.036 

As % of GDP   (0.029) (0.027) 

Residual cycle component of 0.022 0.017 -0.016 -0.025 

Log.  of Price Index (1st Lag) (0.080) (0.079) (0.085) (0.084) 

RC # Mining rent  -- -- 0.045 0.054 

As % of GDP   (0.041) (0.043) 

Squared of resid.  cycle comp.  of -- 1.435** -- 1.329** 

Log.  of Price Index (1st Lag)  (0.556)  (0.625) 

Log.  of Quantity Index 0.009 0.009 -0.001 -0.006 

(2nd Lag) (0.020) (0.020) (0.020) (0.019) 

Observations 1063 1063 1063 1063 

No.  Countries 39 39 39 39 

Years 1970-2016 1970-2016 1970-2016 1970-2016 
Notes:  The model is estimated with the Fixed-effects estimator.  The dependent variable is included in logarithmic terms.  
All variables included in the model are detrended.  Country fixed-effects and a constant are included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

 
C – Removing Chile from the estimation 
 
In our sample Chile is the country which is the most exposed to the mining sector:  in one 
year its level of exposure reached 20.95%.  There may be the possibility that it distorts our 
estimation.  We, therefore, replicate the main tables excluding Chile.  The main results are 
confirmed, particularly the cyclical effect of long-term price shocks on innovation.  With this 
specification the effect of prices on environmental mining innovation completely disappears 
(see Table C3), confirming our hypothesis that this type of innovation may be reacting to 
some other factors like for example environmental policy.  In addition, in the panel 
estimations (see Table C5 and C6) the positive and significant effect of the long price cycle 
component is confirmed, demonstrating that the presence of Chile was not affecting our 
original findings. 
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Table C1:  Time series estimation 
 Dependent Variable:  Log.  of mining patents applications worldwide  

(1) (2) 

Log.  of Price Index 0.327*** -- 

(1st Lag) (0.109)  

Long cycle component of -- 1.107*** 

Log.  of Price Index (1st Lag)  (0.110) 

Medium cycle component of -- 0.555 

Log.  of Price Index (1st Lag)  (0.151) 

Short cycle component of -- 0.167 

Log.  of Price Index (1st Lag)  (0.187) 

Residual cycle component of -- -0.212 

Log.  of Price Index (1st Lag)  (0.234) 

Log.  of Quantity Index 0.508*** 0.204*** 

(2nd Lag) (0.068) (0.053) 

Observations 44 44 

Years 1970-2016 1970-2016 

R-squared 0.74 0.85 
Notes:  The model is estimated with the OLS estimator.  The dependent variable is included in logarithmic terms.  All variables 
included in the model are detrended.  A constant is included in each specification.  Robust standard errors in parentheses.  *, ** 
and *** respectively denote significance at 10%, 5% and 1% levels. 

 
 
Table C2:  Time series estimation, different mining categories 

 Blasting Environment Exploration Metallurgy Mining Processing Refining Transport 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Log.  of Price Index  

(1st Lag)  

0.087 

(0.101) 

0.129 

(0.080) 

0.312*** 

(0.125) 

0.031 

(0.120) 

0.476** 

(0.134) 

0.420*** 

(0.142) 

0.195** 

(0.085) 

0.449*** 

(0.136) 

Log.  of Quantity Index 

(2nd Lag) 

0.132** 

(0.059) 

0.465*** 

(0.047) 

0.563*** 

(0.073) 

0.347*** 

(0.070) 

0.435*** 

(0.079) 

0.462*** 

(0.083) 

0.465*** 

(0.050) 

0.731*** 

(0.080) 

Observations 44 44 44 44 44 44 44 44 

Years 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 

R-squared 0.18 0.77 0.71 0.43 0.64 0.62 0.77 0.78 
Notes:  The model is estimated with the seemingly unrelated estimator (SUR).  The dependent variable is included in 
logarithmic terms.  All variables included in the model are detrended.  A constant is included in each specification.  Robust 
standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 
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Table C3:  Time series estimation, different mining categories 
 Blasting Environment Exploration Metallurgy Mining Processing Refining Transport 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Long cycle comp.  of Log.  

of Price Index  (1st Lag)  

0.412** 

(0.179) 

0.177 

(0.147) 

1.300*** 

(0.151) 

0.571*** 

(0.196) 

1.488*** 

(0.184) 

1.275*** 

(0.221) 

0.546*** 

(0.147) 

1.367*** 

(0.200) 

Medium cycle comp.  of 

Log.  of Price Index (1st 

Lag) 

0.060 

(0.173) 

0.174 

(0.143) 

-0.224 

(0.146) 

-0.363* 

(0.190) 

0.123 

(0.178) 

0.258 

(0.215) 

0.179 

(0.142) 

0.146 

(0.194) 

Short cycle comp.  of Log.  

of Price Index (1st Lag) 

0.084 

(0.183) 

0.215 

(0.151) 

0.247 

(0.154) 

0.198 

(0.200) 

0.147 

(0.188) 

0.100 

(0.226) 

0.078 

(0.150) 

0.233 

(0.204) 

Residual cycle comp.  of 

Log.  of Price Index (1st 

Lag) 

-0.419* 

(0.237) 

-0.175 

(0.196) 

-0.326 

(0.200) 

-0.462* 

(0.260) 

-0.108 

(0.243) 

-0.251 

(0.293) 

-0.195 

(0.194) 

-0.241 

(0.265) 

Log.  of Quantity Index 

 (2nd Lag) 

-0.043 

(0.085) 

0.406*** 

(0.070) 

0.182*** 

(0.072) 

0.127 

(0.094) 

0.040 

(0.088) 

0.095 

(0.106) 

0.296*** 

(0.070) 

0.351*** 

(0.095) 

Observations 44 44 44 44 44 44 44 44 

Years 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 1970-2016 

R-squared 0.30 0.79 0.88 0.58 0.82 0.75 0.81 0.87 
Notes:  The model is estimated with the seemingly unrelated estimator (SUR).  The dependent variable is included in 
logarithmic terms.  All variables included in the model are detrended.  A constant is included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

 
 
Table C4:  Time series estimation, mining vs METS firms 

 Dependent Variable:  Log.  of mining patents applications worldwide 

Mining firms METS Mining firms METS 

(1) (2) (3) (4) 

Log.  of Price Index -0.059 0.674*** -- -- 

(1st Lag) (0.145) (0.229)   

Long cycle component of -- -- -0.240 1.173*** 

Log.  of Price Index (1st Lag)   (0.272) (0.409) 

Medium cycle component of -- -- 0.136 1.030*** 

Log.  of Price Index (1st Lag)   (0.264) (0.397) 

Short cycle component of -- -- 0.123 -0.197 

Log.  of Price Index (1st Lag)   (0.278) (0.418) 

Residual cycle component of -- -- -0.388 0.576 

Log.  of Price Index (1st Lag)   (0.360) (0.542) 

Log.  of Quantity Index 0.724*** 0.304** 0.729*** 0.098 

(2nd Lag) (0.085) (0.134) (0.130) (0.195) 

     

Observations 44 44 44 44 

Years 1970-2016 1970-2016 1970-2016 1970-2016 

R-squared 0.67 0.37 0.68 0.45 
Notes:  The model is estimated with the seemingly unrelated estimator (SUR).  The dependent variable is included in 
logarithmic terms.  All variables included in the model are detrended.  A constant is included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 
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Table C5:  Panel estimation 
 Dependent Variable:  Log.  of mining patents by applicant country 

(1a) (1b) (2a) (2b) 

Log.  of Price Index 0.182*** 0.137 -- -- 

(1st Lag) (0.067) (0.089)   

Mining rent as % -- 0.023* -- 0.014 

Of GDP  (0.013)  (0.042) 

Price Index # Mining rent  -- -0.004 -- -- 

as % of GDP  (0.017)   

Long cycle comp.  of -- -- 0.349*** 0.367** 

Log.  of Price Index (1st Lag)   (0.121) (0.140) 

LC # Mining rent  -- -- -- -0.008 

As % of GDP    (0.183) 

Medium cycle comp.  of -- -- 0.142 0.235* 

Log.  of Price Index (1st Lag)   (0.120) (0.132) 

MC # Mining rent  -- -- -- -0.171 

As % of GDP    (0.103) 

Short cycle comp.  of -- -- 0.011 0.082 

Log.  of Price Index (1st Lag)   (0.099) (0.111) 

SC # Mining rent  -- -- -- -0.140*** 

As % of GDP    (0.050) 

Residual cycle comp.  of -- -- -0.129 -0.175 

Log.  of Price Index (1st Lag)   (0.018) (0.151) 

RC # Mining rent  -- -- -- 0.069 

As % of GDP    (0.062) 

Log.  of Quantity Index 0.023 0.013 -0.002 -0.003 

(2nd Lag) (0.017) (0.015) (0.005) (0.016) 

Observations 1469 1469 1469 1469 

No Countries 53 53 53 53 

Years 1970-2016 1970-2016 1970-2016 1970-2016 
Notes:  The model is estimated with the Fixed-effects estimator.  The dependent variable is included in logarithmic terms.  
All variables included in the model are detrended.  Country fixed-effects and a constant are included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 

 
  



34 
 

Table C6:  Panel estimation, using country-specific price index 
Dependent Variable:  Log. of mining patents by applicant country 

 (1a) (1b) (2a) (2b) 

Log.  of Price Index 0.082** 0.087** -- -- 

(1st Lag) (0.034) (0.035)   

Mining rent as % -- -0.018 -- -0.026 

Of GDP  (0.023)  (0.020) 

Price Index # Mining rent  -- -0.002 -- -- 

as % of GDP  (0.029)   

Long cycle component of -- -- 0.309*** 0.315** 

Log.  of Price Index (1st Lag)   (0.114) (0.125) 

LC # Mining rent  -- -- -- 0.030 

As % of GDP    (0.108) 

Medium cycle component of -- -- 0.032 0.078 

Log.  of Price Index (1st Lag)   (0.054) (0.060) 

MC # Mining rent  -- -- -- -0.075* 

As % of GDP    (0.042) 

Short cycle component of -- -- 0.018 0.045 

Log.  of Price Index (1st Lag)   (0.041) (0.044) 

SC # Mining rent  -- -- -- -0.059 

As % of GDP    (0.049) 

Residual cycle component of -- -- 0.017 -0.011 

Log.  of Price Index (1st Lag)   (0.080) (0.088) 

RC # Mining rent  -- -- -- 0.074 

As % of GDP    (0.053) 

Log.  of Quantity Index 0.017 0.020 0.007 0.009 

(2nd Lag) (0.019) (0.019) (0.020) (0.020) 

Observations 1034 1034 1034 1034 

No Countries 38 38 38 38 

Years 1970-2016 1970-2016 1970-2016 1970-2016 
Notes:  The model is estimated with the Fixed-effects estimator.  The dependent variable is included in logarithmic terms.  
All variables included in the model are detrended.  Country fixed-effects and a constant are included in each specification.  
Robust standard errors in parentheses.  *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 
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