WIPO ECONOMIC RESEARCH WORKING PAPERS

## BASIC, APPLIED AND EXPERIMENTAL KNOWLEDGE AND PRODUCTIVITY: FURTHER EVIDENCE

Mosahid Khan Kul B Luintel

Working Paper No. 2 December 2010



# Basic, Applied and Experimental Knowledge and Productivity: Further Evidence

Mosahid Khan<sup>(1)</sup> and Kul B Luintel<sup>(2)</sup>

#### Abstract

Analyzing a novel dataset we find significantly positive effects of basic, and applied and experimental knowledge stocks on domestic output and productivity for a panel of 10 OECD countries. This letter updates the work of, among others, Mansfield (1980), Griliches (1986) and Adams (1990), at an international setting.

JEL Classification: F12: F2: O3.

Key Words: Basic and Applied Research; TFP; Panel Co-integration.

#### Disclaimer

We thank Peter Pedroni for his useful comments. The views expressed in this paper are those of the authors, and do not necessarily reflect those of the World Intellectual Property Organization or its Member States. The usual disclaimer applies.

(1) World Intellectual Property Organization, Geneva, Switzerland; e-mail: <u>mosahid.khan@wipo.int</u>
(2) Cardiff Business School, Cardiff, United Kingdom; e-mail: <u>luintelk@cardiff.ac.uk</u>

Contact information: Economics and Statistics Division, World Intellectual Property Organization, 34 Chemin des Colombettes, P.O. Box 18, CH-1211 Geneva 20, Switzerland, e-mail: <u>chiefeconomist@wipo.int</u>

Working papers and available for download free of charge at: www.wipo.int/econ\_stat

#### I. Introduction

R&D activities are grouped into three distinct types: basic research, applied research and experimental development. Frascati Manual (2002) defines basic research as "experimental or theoretical work undertaken primarily to acquire new knowledge... without any particular application or use in view (p.77)". National Science Foundation defines it as "original investigation for the advancement of scientific knowledge...which do(es) not have immediate commercial objectives".<sup>1</sup>

These distinctions imply that basic research is fundamental to knowledge breakthroughs. Economists and policy makers have long debated its role on productivity. Mansfield (1980, p. 863) succinctly puts it: "A hotly debated topic among economists, scientists, technologists and policymakers is: Does basic research, as contrasted with applied research and development, make a significant contribution to an industry's or firm's rate of technological innovation and productivity change?" Griliches (1986, p. 145) asks: "whether different types of R&D (basic vs. applied) are equally potent in generating productivity growth". Whilst there is large empirical literature on R&D and productivity, studies linking basic research and applied and experimental development to productivity are rare.

Mansfield (1980), for the first time, tested this debate on US micro data and found significantly positive effects of basic and applied research on productivity growth. <sup>2</sup> Grilliches (1986) confirmed this with the proviso that his results are based on "level regressions" and may suffer from "biases" (p. 147). <sup>3</sup> Succeeding studies on this issue are sparse. Furthermore, a study that captures basic versus applied and experimental knowledge across all R&D performing institutions is lacking. This letter bridges this gap.

We measure types of knowledge across all institutions: academic, business, government and private nonprofit sector. This is distinct from existing studies confined to particular institutions only. We also incorporate the measures of foreign knowledge stocks. Thus, we extend this topic to an international setting corresponding to the recent literature on international R&D spillover. We use non-stationary panel data econometrics which addresses the concerns of level regressions.

#### **II. Specification**

We estimate separate models for output and productivity. Following Mansfield (1980), Griliches (1986), Adams (1990) and Coe et al. (2009), an augmented Cob-Douglas production function that permits types of knowledge stocks as factor inputs is:

$$\log y_{it} = \alpha_i + \beta_k \log k_{it} + \beta_l \log l_{it} + \beta_h \log h_{it} + \beta_b \log s_{it}^b + \beta_a \log s_{it}^{ae} + \beta_f \log s_{it}^f + e_{it}$$
(1)

where 'i' denotes countries (i=1,...,N) and 't' is the time subscript.  $y_{it}$ ,  $k_{it}$ ,  $l_{it}$  and  $h_{it}$  respectively denote real output, physical capital stock, labor input and the stock of human capital.  $s_{it}^{b}$ ,  $s_{it}^{ae}$  and  $s_{it}^{f}$  respectively denote the stocks of basic, applied and experimental, and foreign knowledge stocks.  $\alpha_{i}$  are country-specific intercepts and  $\beta s$  are the respective point elasticities. We specify a productivity relationship:

$$\log t f p_{it} = \theta_i + \lambda_h \log h_{it} + \lambda_b \log s_{it}^b + \lambda_a \log s_{it}^{ae} + \lambda_f \log s_{it}^f + \varepsilon_{it}$$
(2)

where  $tfp_{it}$  is domestic total factor productivity;  $\theta_i$  and  $\lambda s$  are parameters. Equation (2) is directly obtained from equation (1) by imposing constant returns to scale on capital and labor - a well-known specification in the literature. In estimations, we employ four types of foreign knowledge stocks, in turn (see below).

#### III. Data and Sample

<sup>&</sup>lt;sup>1</sup> Mansfield (1980, p. 863).

<sup>&</sup>lt;sup>2</sup> "My results seem to be the first data on this subject, about which there is so much discussion (Mansfield, op. cit, p. 863)".

<sup>&</sup>lt;sup>3</sup> See also Link (1981).

We analyze an unbalanced panel of 10 OECD countries with 346 observations. <sup>4</sup> R&D expenditure data on basic research, applied research and experimental development are used to compute respective stocks  $-S_{it}^{b}$  and  $S_{it}^{ae}$  - through perpetual inventory method (PIM) at 15% and 10% depreciation rates. The foreign knowledge stocks are computed employing import ratios as weights. For example, the foreign basic knowledge stock for the i<sup>th</sup> country ( $s_{it}^{f-b}$ ) is:

$$s_{it}^{f-b} = \sum_{j=1}^{N-i} (m_{ijt} / y_{jt}) * s_{jt}^{b}$$
(4)

where,  $y_j$  is GDP of country j;  $m_{ij}$  is the capital goods imports of country i from country j;  $s_{jt}^b$  denotes the basic knowledge stock of j; (j=1,..., N-1) and N=10. Likewise, we compute foreign applied and experimental R&D capital stocks ( $s_{it}^{f-ae}$ ), foreign business sector R&D capital stocks ( $s_{it}^{f-bus}$ ) and foreign total R&D stock ( $s_{it}^{f-d}$ ) for each of the sample country. <sup>5</sup>  $k_{it}$  is computed from the fixed capital formation using PIM at 8% depreciation rate. All data are from OECD except the  $tfp_{it}$  and  $h_{it}$ , which respectively are from the European Commission and Bassanini and Scarpetta (2002).

#### **IV. Empirical Results**

The panel unit root tests proposed by Im, Pesaran and Shin (2003) and Fisher-ADF (Maddala and WU, 1999) both confirm that our panel data are unit root processes. For brevity, results are available on request. We apply Pedroni's (1999) group-t-statistic (parametric) for co-integration test as it (i) allows for heterogeneous co-integrating vectors across panel units, and (ii) is the most powerful test (Pedroni, 2004). The co-integrating parameters are estimated by FMOLS.

Table 1 reports the results for output. Griliches (1986) and Adams (1990) highlight the importance of the lag of  $s_{it}^b$ ; we estimate up to its fourth order lag. Data limitations precluded us to venture beyond four lags. Three models, showing alternative use of  $s_{it}^b$  and  $s_{it}^{ae}$ , are reported under each lag. Column (i) would be identical across all lags because it excludes  $s_{it}^b$ .

Panel A reports the group-t-statistic which rejects non co-integration across all specifications. All models are co-integrated. Panel B reports the co-integrating parameters when  $s_{it}^{f-bus}$  is included.  $s_{it}^{b}$  and  $s_{it}^{ae}$  are positive and significant throughout.  $s_{it}^{ae}$  shows bigger point elasticity than that of  $s_{it}^{b}$  which peaks at L=2 suggesting that the former's effect is eleven times larger. This may seem dramatic but the parameter of  $s_{it}^{ae}$  are not unreasonably high. This simply implies that domestically  $s_{it}^{ae}$  appears more important than  $s_{it}^{b}$  vis-à-vis output, which is plausible.  $s_{it}^{f-bus}$  and  $l_{it}$  are also positive and significant.  $h_{it}$  is positive and significant in all models but one, [column (iii) under L=4].  $k_{it}$  appears insignificant in column (iii) except for L=4, which is due to collinearity. We regress  $h_{it}$  on  $k_{it}$  and  $l_{it}$  and use the resulting residual series as orthogonalized human capital ( $h_{it}^{0}$ ). This improves the significance of  $k_{it}$  without affecting qualitatively any other estimates (compare columns (iii) and (iv) across all lags). Panel C reports the results from the other three measures of foreign knowledge stocks -  $s_{it}^{f-b}$ ,  $s_{it}^{f-ae}$  and  $s_{it}^{f-d}$  are significant at L=3 and L=4. The international spillover effects of  $s_{it}^{f-n}$  are somewhat higher than those of  $s_{it}^{f-bus}$  which is plausible. Both  $s_{it}^{f-d}$  and  $s_{it}^{f-bus}$  show larger effects than those of  $s_{it}^{f-ae}$ .

<sup>&</sup>lt;sup>4</sup> Sample countries are: Australia (29), France (37), Iceland (36), Ireland (37), Italy (37), Japan (32), Portugal (36), Norway (37), Spain (28) and USA (37); where (.) indicates annual data points. The longest sample of 37 data points pertain to 1970-2006 and the shortest 28 data points spans for 1979-2006.

<sup>5</sup>  $S_{it}^{f}$  is usually computed from within the sample but, data permitting, we see no reason to restrict international knowledge spillovers to mere 9 countries as we have 10 sample countries. Therefore, due to data constraints, our measures of  $S_{it}^{f-b}$  and  $S_{it}^{f-ae}$  are based on 10 sample countries but  $S_{it}^{f-al}$  and  $S_{it}^{f-al}$  embrace other 19 OECD countries.

<sup>&</sup>lt;sup>6</sup> The only exception is  $S_{it}^{f-b}$  in column (ii) under L=3.

Table 2 reports TFP results. All models are co-integrated. Panel B shows that  $s_{it}^b$ ,  $s_{it}^{ae}$  and  $s_{it}^{f-bus}$  are positive and significant throughout. With regard to TFP, the parameter of  $s_{it}^{ae}$  appear bigger than those of  $s_{it}^b$  in most cases, nonetheless, the difference is not as large as before.  $h_{it}$  appears insignificant in several specifications which is due to collinearity with  $s^{ae}$ . Column (iv), which uses the orthogonalized  $s^{ae}$  (i.e.,  $s^{Oae}$ ), resolves the problem.<sup>7</sup> As before,  $s_{it}^{f-it}$  is significant throughout (Panel C); the significant at the higher lags of  $s_{it}^{b}$ .  $s_{it}^{f-ae}$  shows mixed results, consistently significant at the 4<sup>th</sup> lags of  $s^b$  only. The use of these alternative measures of  $s_{it}^f$ , in turn, does not change the qualitative nature of other parameters in panel B.

Results are robust to knowledge stocks calculated at 10% depreciation rate. The significance of  $s^{b}$  and  $s^{ae}$  remains to alternative weightings by bilateral R&D collaboration or FDI flows for computing  $s_{it}^{f}$ . Our findings of the positive contributions of  $s_{it}^{b}$  are consistent with Mansfield (1980), Griliches (1986) and Adams (1990) whereas we find more robust contribution of  $s_{it}^{ae}$  than Mansfield (op. cit). On international knowledge spillovers, our findings are consistent with the literature (e.g., Coe et al., 2009).<sup>8</sup>

#### V. Conclusion

Two types (basic vs. applied and experimental) of knowledge stocks are measured across all players in the R&D sector. Both contribute to domestic output and productivity. The international knowledge spillovers associated with basic R&D, total R&D and business sector R&D appear prominent but those with applied and experimental R&D appear less robust. Evidence is consistent that basic knowledge exerts its effects over a long period.

 $s_t^{ae}$  is regressed on  $h_{it}$  and the residual is  $s^{Oae}$  .

<sup>&</sup>lt;sup>8</sup> Luintel and Khan (2004) argue that, with sufficiently long time series, one approach to modelling would be to check cross-country data poolability. This issue is not pursued here.

#### References

Adams, J. D., (1990), "Fundamental Stock of Knowledge and Productivity Growth", Journal of Political Economy, 98, 673-702.

Bassanini, A., and Scarpetta, S., (2002), "Does human capital matter for growth in OECD countries? A pooled mean-group approach", Economics Letters 74(3), 399-405.

Coe, D. T., Helpman, E. and Hoffmaister, A. W, (2009), "International R&D Spillovers and Institutions," European Economic Review, 53, 723-741.

Frascasti Manual (2002), OECD.

Griliches, Z., (1986), "Productivity, R&D and Basic Research at the Firm Level in the 1970's", American Economic Review, 76, 141-154.

Im, K.-S., Pesaran, H., and Shin, Y. (2003), "Testing for unit roots in heterogeneous panels", Journal of Econometrics 115, 53-74.

Link, A. N., (1981), "Basic Research snd Productivity Increase in Manufacturing: Additional Evidence", American Economic Review, 71, 111-112.

Luintel, K. B. and Khan M., (2004), "Are International R&D Spillovers Costly for the U.S?", The Review of Economics and Statistics, LXXXVI, 896-911.

Mansfield E., (1980), "Basic Research and Productivity Increase in Manufacturing", American Economic Review, 70, 863-873.

Maddala, G, and Wu, S., (1999), "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test", Oxford Bulletin of Economics and Statistics, 61, 631-652.

Pedroni, P., (1999), "Critical values for cointegration tests in heterogeneous panels with multiple regressors", Oxford Bulletin of Economics and Statistics (Special Issue), 653–670.

Pedroni, P., (2004), "Panel cointegration: asymptotic and finite sample properties of pooled time series tests, with an application to the PPP hypothesis. Econometric Theory, 20, 597–625.

| 1                      |                             |                             |                             |                         |                             |                             |                         |                             |                             |                             |                             |                             |                |
|------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------|
|                        |                             |                             |                             | Pa                      | nel A: F                    | Panel co                    | o-integra               | ation te                    | sts                         |                             |                             |                             |                |
|                        |                             |                             | L=1                         |                         |                             | L=2                         |                         |                             | L=3                         |                             |                             | L=4                         |                |
|                        | (i)                         | (ii)                        | (iii)                       | (iv)                    | (ii)                        | (iii)                       | (iv)                    | (ii)                        | (iii)                       | (iv)                        | (ii)                        | (iii)                       | (iv)           |
| Grou<br>p-t-<br>stats  | -<br>2.59<br>1 <sup>a</sup> | -<br>4.38<br>4 <sup>a</sup> | -<br>2.96<br>5 <sup>a</sup> | -<br>2.96<br>5          | -<br>4.17<br>3 <sup>a</sup> | -<br>3.74<br>9 <sup>a</sup> | -<br>3.74<br>9          | -<br>2.98<br>0 <sup>a</sup> | -<br>4.78<br>3 <sup>a</sup> | -<br>4.78<br>3 <sup>a</sup> | ۔<br>1.56<br>8 <sup>°</sup> | -<br>2.48<br>5 <sup>a</sup> | -<br>2.48<br>5 |
|                        | -                           | -                           |                             | -                       | Pane                        | B: FM                       | OLS Re                  | esults                      | -                           | -                           | -                           |                             | -              |
|                        | 0.11                        | 0.32                        | 0.12                        | 0.20                    | 0.21                        | 0.09                        | 0.18                    | 0.15                        | 0.09                        | 0.16                        | 0.11                        | 0.02                        | 0.11           |
| k.                     | 4 <sup>a</sup>              | 8 <sup>a</sup>              | 3                           | 0 <sup>a</sup>          | 6 <sup>b</sup>              | 8                           | 5 <sup>b</sup>          | 4 <sup>a</sup>              | 5                           | 9 <sup>b</sup>              | 9 <sup>a</sup>              | 2 <sup>a</sup>              | 9 <sup>b</sup> |
| 1º it                  | [6.54<br>3]                 | [2.66<br>5]                 | [0.81<br>4]                 | [3.32<br>9]             | [1.99<br>8]                 | [0.24<br>3]                 | [2.42<br>8]             | [2.73<br>3]                 | [1.34<br>4]                 | [2.21<br>5]                 | [3.81<br>5]                 | [2.80<br>[2                 | [2.51<br>9]    |
|                        | 0.73                        | 0.48                        | 0.64                        | 0.58                    | 0.50                        | 0.58                        | 0.51                    | 0.57                        | 0.53                        | 0.47                        | 0.54                        | 0.53                        | 0.45           |
| $l_{it}$               | [12.8                       | 5°<br>[12.1                 | 2°<br>[14.0                 | [10.5                   | 5°<br>[12.0                 | 3 <sup>-</sup><br>[14.6     | 3°<br>[10.8             | 8 <sup>-</sup><br>[12.8     | 1 <sup>-</sup><br>[14,4     | 1°<br>[11.0                 | 9 <sup>-</sup><br>[12.7     | 0°<br>[13.4                 | 3°<br>[10.8    |
|                        | 3]                          | 5]                          | 2]                          | 3]                      | 3]                          | 5]                          | 4]                      | 9]                          | 6]                          | 2]                          | 5]                          | [10]                        | 2]             |
|                        | 0.25<br>2ª                  | 0.26<br>⊿ª                  | 0.40<br>5 <sup>a</sup>      |                         | 0.57<br>6 <sup>a</sup>      | 0.45<br>q <sup>a</sup>      |                         | 0.73<br>8 <sup>a</sup>      | 0.39<br>1 <sup>a</sup>      |                             | 0.85<br>3 <sup>a</sup>      | 0.51<br>1                   |                |
| $h_{it}$               | [2.98                       | [6.46                       | [4.89                       | -                       | [7.20                       | [4.76                       | -                       | [5.83                       | [3.04                       | -                           | [5.58                       | [1.53                       | -              |
|                        | 5]                          | 5]                          | 9]                          | 0.40                    | 2]                          | 5]                          | 0.45                    | 3]                          | 4]                          | 0.30                        | 5]                          | 2]                          | 0.51           |
| <i>b</i> <sup>0</sup>  |                             |                             |                             | 5 <sup>a</sup>          |                             |                             | 9 <sup>a</sup>          |                             |                             | 0.39<br>1 <sup>a</sup>      |                             |                             | 0.51           |
| $n_{it}$               | -                           | -                           | -                           | [4.89                   | -                           | -                           | [4.76                   | -                           | -                           | [3.04                       | -                           | -                           | [1.53          |
|                        | 0.13                        |                             | 0.15                        | 0.15                    |                             | 0.17                        | 0.17                    |                             | 0.15                        | 0.15                        |                             | 0.11                        | 0.11           |
| $S_{ae}^{ae}$          | 4 <sup>a</sup>              | -                           | 8 <sup>a</sup>              | 8 <sup>a</sup>          | -                           | 0 <sup>a</sup>              | 0 <sup>a</sup>          | -                           | 0 <sup>a</sup>              | 0 <sup>a</sup>              | -                           | 1 <sup>a</sup>              | 1 <sup>a</sup> |
| <sup>2</sup> <i>it</i> | [3.95<br>91                 |                             | [3.73<br>6]                 | [3.73<br>6]             |                             | [3.82                       | [3.82                   |                             | [3.38<br>81                 | [3.38<br>81                 |                             | [3.17<br>8]                 | [3.17<br>81    |
| f -bus                 | 0.04                        | 0.06                        | 0.02                        | 0.02                    | 0.09                        | 0.04                        | 0.04                    | 0.09                        | 0.05                        | 0.05                        | 0.11                        | 0.07                        | 0.07           |
| $S_{it}^{j ous}$       | 5°                          | 8°<br>1848                  | 9°<br>[477                  | 9°<br>[477              | 2°<br>19.87                 | 7°<br>1640                  | 7°<br>1640              | 2°<br>1891                  | 1°<br>[4 90                 | 1°<br>[4 90                 | ° 1<br>[10.2                | 3°<br>16.33                 | 3°<br>[633     |
|                        | 7]                          | 2]                          | [                           | [                       | [0.01                       | [0.10                       | 0]                      | 2]                          | 2]                          | 2]                          | 1]                          | [0.00                       | [0.00          |
| <i>b</i>               |                             | 0.08<br>2 <sup>a</sup>      | 0.02                        | 0.02                    |                             |                             |                         |                             |                             |                             |                             |                             |                |
| $S_{it-1}^{o}$         | -                           | [4.14                       | [2.70                       | [2.70                   | -                           | -                           | -                       | -                           | -                           | -                           | -                           | -                           | -              |
|                        |                             | 3]                          | 7]                          | 7]                      | 0.08                        | 0.01                        | 0.01                    |                             |                             |                             |                             |                             |                |
| e <sup>b</sup>         |                             |                             |                             |                         | 6 <sup>a</sup>              | 5 <sup>a</sup>              | 5 <sup>a</sup>          |                             |                             |                             |                             |                             |                |
| $S_{it-2}$             | -                           | -                           | -                           | -                       | [4.59                       | [3.49                       | [3.49                   | -                           | -                           | -                           | -                           | -                           | -              |
|                        |                             |                             |                             |                         |                             | 4]                          | 4]                      | 0.09                        | 0.03                        | 0.03                        |                             |                             |                |
| $S_{it-3}^{b}$         | -                           | -                           | -                           | -                       | -                           | -                           | -                       | 9 <sup>a</sup>              | 8 <sup>a</sup>              | 8 <sup>a</sup>              | -                           | -                           | -              |
| <i>u</i> -5            |                             |                             |                             |                         |                             |                             |                         | 4]                          | [4.02<br>7]                 | [4.02<br>7]                 |                             |                             |                |
|                        |                             |                             |                             |                         |                             |                             |                         |                             |                             |                             | 0.09                        | 0.06                        | 0.06           |
| $S_{it-4}^b$           | -                           | -                           | -                           | -                       | -                           | -                           | -                       | -                           | -                           | -                           | 5                           | 3 -<br>[4,66                | 3 -<br>[4.66   |
|                        |                             |                             |                             |                         |                             |                             |                         |                             |                             |                             | 7]                          | 9]                          | 9]             |
| Panel                  | C: For                      | eign Kn                     | owledg                      | e Stock                 | s based                     | d on Ba                     | sic ( $S_{it}^{f}$      | <sup>-b</sup> ), App        | olied an                    | d Expe                      | rimenta                     | $ (S_{it}^{f-ae}) $         | ) and          |
|                        |                             |                             |                             |                         | to                          | tal ( $s_{it}^{f}$          | <sup>-tl</sup> ) R&I    | D.                          |                             |                             |                             |                             |                |
|                        | 0.03                        | 0.02                        | 0.01                        | 0.01                    | 0.02                        | 0.02                        | 0.02                    | 0.02                        | 0.02                        | 0.02                        | 0.03                        | 0.04                        | 0.04           |
| $S_{it}^{f-b}$         | 1 <sup>°</sup><br>[4.38     | 4 <sup>°</sup><br>[2.21     | 8 <sup>a</sup><br>[4.01     | 8 <sup>a</sup><br>[4.01 | 9°<br>[2.12                 | 8 °<br>[3.47                | 8 <sup>a</sup><br>[3.47 | 0<br>[1.01                  | 8°<br>[1.91                 | 8°<br>[1.91                 | / °<br>[2.29                | 8 °<br>[3.18                | 8 "<br>[3.18   |
|                        | 4]                          | 8]                          | 1]                          | 1]                      | 5]                          | 8]                          | 8]                      | 7]                          | 0]                          | 0]                          | 1]                          | 9]                          | 9]             |
| 6                      | 0.02                        | 0.01                        | 0.00                        | 0.00                    | 0.01                        | 0.01                        | 0.01                    | 0.00                        | 0.00                        | 0.00                        | 0.02                        | 0.02<br>o                   | 0.02<br>0      |
| $S_{it}^{J-ae}$        |                             | 7<br>[1 09                  | 8 <sup>a</sup>              | 8 <sup>a</sup>          | 9                           | 3°<br>[2 51                 | 3°                      | 5                           | 9                           | 9                           | [1.91                       | [0.94                       | [0.94          |
| 1                      | [∠.00                       | [[1.00                      | [[2.9]                      | [[2.9]                  | [1.20                       | [2.01                       | [[2.01                  | [[0 01                      | 10.14                       | 10.14                       | <u>4</u> 1                  | 61                          | 61             |

|                  |                                       |                                       |                                        | Pa                                     | nel A: F                               | Panel co                               | o-integr                               | ation te                              | sts                                   |                                       |                                        |                                       |                                       |
|------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|
|                  |                                       |                                       | L=1                                    |                                        |                                        | L=2                                    |                                        |                                       | L=3                                   |                                       |                                        | L=4                                   |                                       |
|                  | (i)                                   | (ii)                                  | (iii)                                  | (iv)                                   | (ii)                                   | (iii)                                  | (iv)                                   | (ii)                                  | (iii)                                 | (iv)                                  | (ii)                                   | (iii)                                 | (iv)                                  |
| Grou<br>p-t-     | -<br>2.59                             | -<br>4.38                             | -<br>2.96                              | -<br>2.96                              | -<br>4.17                              | -<br>3.74                              | -<br>3.74                              | -<br>2.98                             | -<br>4.78                             | -<br>4.78<br>2ª                       | -<br>1.56                              | -<br>2.48                             | -<br>2.48                             |
| Siais            |                                       | 4                                     | 5                                      | 5                                      | J<br>Dano                              | IB·EM                                  |                                        |                                       | 3                                     | 3                                     | 0                                      | 5                                     | 5                                     |
|                  | 0.11                                  | 0.22                                  | 0.12                                   | 0.20                                   |                                        |                                        |                                        |                                       | 0.00                                  | 0.16                                  | 0.11                                   | 0.02                                  | 0.11                                  |
| k <sub>it</sub>  | 6.54<br>[6.54                         | 0.32<br>8 <sup>ª</sup><br>[2.66<br>5] | 0.12<br>3<br>[0.81<br>4]               | 0.20<br>0 <sup>a</sup><br>[3.32<br>9]  | 6 <sup>b</sup><br>[1.99<br>8]          | 0.09<br>8<br>[0.24<br>3]               | [2.42<br>8]                            | 4 <sup>a</sup><br>[2.73<br>3]         | 0.09<br>5<br>[1.34<br>4]              | 9 <sup>b</sup><br>[2.21<br>5]         | 9 <sup>a</sup><br>[3.81<br>5]          | 0.02<br>2ª<br>[2.80<br>1]             | 9 <sup>b</sup><br>[2.51<br>9]         |
| l <sub>it</sub>  | 0.73<br>0 <sup>a</sup><br>[12.8<br>3] | 0.48<br>5ª<br>[12.1<br>5]             | 0.64<br>2 <sup>ª</sup><br>[14.0<br>2]  | 0.58<br>0 <sup>a</sup><br>[10.5<br>3]  | 0.50<br>5 <sup>°a</sup><br>[12.0<br>3] | 0.58<br>3 <sup>°a</sup><br>[14.6<br>5] | 0.51<br>3 <sup>ª</sup><br>[10.8<br>4]  | 0.57<br>8 <sup>ª</sup><br>[12.8<br>9] | 0.53<br>1ª<br>[14.4<br>6]             | 0.47<br>1 <sup>ª</sup><br>[11.0<br>2] | 0.54<br>9 <sup>°a</sup><br>[12.7<br>5] | 0.53<br>0 <sup>ª</sup><br>[13.4<br>6] | 0.45<br>3 <sup>a</sup><br>[10.8<br>2] |
| h <sub>it</sub>  | 0.25<br>2 <sup>ª</sup><br>[2.98<br>5] | 0.26<br>4 <sup>ª</sup><br>[6.46<br>5] | 0.40<br>5 <sup>°a</sup><br>[4.89<br>9] | -                                      | 0.57<br>6 <sup>a</sup><br>[7.20<br>2]  | 0.45<br>9 <sup>°a</sup><br>[4.76<br>5] | -                                      | 0.73<br>8 <sup>a</sup><br>[5.83<br>3] | 0.39<br>1 <sup>a</sup><br>[3.04<br>4] | -                                     | 0.85<br>3 <sup>ª</sup><br>[5.58<br>5]  | 0.51<br>1<br>[1.53<br>2]              | -                                     |
| $h_{it}^o$       | -                                     | -                                     | -                                      | 0.40<br>5 <sup>°a</sup><br>[4.89<br>9] | -                                      | -                                      | 0.45<br>9 <sup>°a</sup><br>[4.76<br>5] | -                                     | -                                     | 0.39<br>1 <sup>ª</sup><br>[3.04<br>4] | -                                      | -                                     | 0.51<br>1<br>[1.53<br>2]              |
| $S_{it}^{ae}$    | 0.13<br>4 <sup>a</sup><br>[3.95<br>9] | -                                     | 0.15<br>8 <sup>a</sup><br>[3.73<br>6]  | 0.15<br>8 <sup>°a</sup><br>[3.73<br>6] | -                                      | 0.17<br>0 <sup>ª</sup><br>[3.82<br>1]  | 0.17<br>0 <sup>ª</sup><br>[3.82<br>1]  | -                                     | 0.15<br>0 <sup>ª</sup><br>[3.38<br>8] | 0.15<br>0 <sup>ª</sup><br>[3.38<br>8] | -                                      | 0.11<br>1 <sup>ª</sup><br>[3.17<br>8] | 0.11<br>1 <sup>a</sup><br>[3.17<br>8] |
| $S_{it}^{f-bus}$ | 0.04<br>5 <sup>a</sup><br>[4.72<br>7] | 0.06<br>8 <sup>a</sup><br>[8.48<br>2] | 0.02<br>9 <sup>a</sup><br>[4.77<br>8]  | 0.02<br>9 <sup>a</sup><br>[4.77<br>8]  | 0.09<br>2ª<br>[9.87<br>6]              | 0.04<br>7 <sup>ª</sup><br>[6.40<br>0]  | 0.04<br>7 <sup>a</sup><br>[6.40<br>0]  | 0.09<br>2ª<br>[8.91<br>2]             | 0.05<br>1 <sup>ª</sup><br>[4.90<br>2] | 0.05<br>1 <sup>ª</sup><br>[4.90<br>2] | 0.11<br>1 <sup>ª</sup><br>[10.2<br>1]  | 0.07<br>3 <sup>ª</sup><br>[6.33<br>5] | 0.07<br>3 <sup>ª</sup><br>[6.33<br>5] |
| $S_{it-1}^{b}$   | -                                     | 0.08<br>2 <sup>a</sup><br>[4.14<br>3] | 0.02<br>0 <sup>a</sup><br>[2.70<br>7]  | 0.02<br>0 <sup>a</sup><br>[2.70<br>7]  | -                                      | -                                      | -                                      | -                                     | -                                     | -                                     | -                                      | -                                     | -                                     |
| $S_{it-2}^b$     | -                                     | -                                     | -                                      | -                                      | 0.08<br>6 <sup>°a</sup><br>[4.59<br>2] | 0.01<br>5 <sup>ª</sup><br>[3.49<br>4]  | 0.01<br>5 <sup>°a</sup><br>[3.49<br>4] | -                                     | -                                     | -                                     | -                                      | -                                     | -                                     |
| $S_{it-3}^{b}$   | -                                     | -                                     | -                                      | -                                      | -                                      | -                                      | -                                      | 0.09<br>9 <sup>ª</sup><br>[5.31<br>4] | 0.03<br>8 <sup>a</sup><br>[4.02<br>7] | 0.03<br>8 <sup>ª</sup><br>[4.02<br>7] | -                                      | -                                     | -                                     |
| $S_{it-4}^b$     | -                                     | -                                     | -                                      | -                                      | -                                      | -                                      | -                                      | -                                     | -                                     | -                                     | 0.09<br>5 <sup>°a</sup><br>[5.11<br>7] | 0.06<br>3 <sup>ª</sup><br>[4.66<br>9] | 0.06<br>3 <sup>a</sup><br>[4.66<br>9] |
| Pane             | I C: For                              | eign Kn                               | owledg                                 | e Stock                                | s base<br>to                           | d on Ba<br>otal ( $s_{it}^{f}$         | sic ( $s_{it}^{f}$                     | <sup>-b</sup> ), App<br>D.            | olied an                              | d Expe                                | rimenta                                | $(S_{it}^{f-ae})$                     | ) and                                 |
| $S_{it}^{f-b}$   | 0.03<br>1 <sup>a</sup><br>[4.38<br>4] | 0.02<br>4 <sup>b</sup><br>[2.21<br>8] | 0.01<br>8 <sup>a</sup><br>[4.01<br>1]  | 0.01<br>8 <sup>a</sup><br>[4.01<br>1]  | 0.02<br>9 <sup>b</sup><br>[2.12<br>5]  | 0.02<br>8 <sup>a</sup><br>[3.47<br>8]  | 0.02<br>8 <sup>a</sup><br>[3.47<br>8]  | 0.02<br>0<br>[1.01<br>7]              | 0.02<br>8 <sup>°</sup><br>[1.91<br>0] | 0.02<br>8 <sup>c</sup><br>[1.91<br>0] | 0.03<br>7 <sup>b</sup><br>[2.29<br>1]  | 0.04<br>8 <sup>a</sup><br>[3.18<br>9] | 0.04<br>8 <sup>a</sup><br>[3.18<br>9] |
| $S_{it}^{f-ae}$  | 0.02<br>0 <sup>a</sup><br>[2.60<br>3] | 0.01<br>7<br>[1.08<br>0]              | 0.00<br>8 <sup>a</sup><br>[2.91<br>1]  | 0.00<br>8 <sup>a</sup><br>[2.91<br>1]  | 0.01<br>9<br>[1.20<br>9]               | 0.01<br>3 <sup>b</sup><br>[2.51<br>9]  | 0.01<br>3 <sup>b</sup><br>[2.51<br>9]  | 0.00<br>5<br>[0.01<br>0]              | 0.00<br>9<br>[0.14<br>0]              | 0.00<br>9<br>[0.14<br>0]              | 0.02<br>5 <sup>°</sup><br>[1.91<br>4]  | 0.02<br>9<br>[0.94<br>6]              | 0.02<br>9<br>[0.94<br>6]              |

### ults for Output

### $\log y_{it} = \alpha_i + \beta_k \log k_{it} + \beta_l \log l_{it} + \beta_h \log h_{it} + \beta_b \log s_{it}^b + \beta_e \log s_{it}^{ae} + \beta_f \log s_{it}^f$

| $S_{it}^{f-tl}$ | 0.06                                        | 0.08           | 0.04           | 0.04           | 0.10           | 0.05            | 0.05            | 0.10           | 0.06           | 0.06           | 0.12           | 0.08           | 0.08           |
|-----------------|---------------------------------------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                 | 0 <sup>a</sup>                              | 1 <sup>a</sup> | 1 <sup>a</sup> | 1 <sup>a</sup> | 3 <sup>a</sup> | 8 <sup>°a</sup> | 8 <sup>°a</sup> | 1 <sup>a</sup> | 0 <sup>a</sup> | 0 <sup>a</sup> | 0 <sup>a</sup> | 3 <sup>a</sup> | 3 <sup>a</sup> |
|                 | [6.16                                       | [8.60          | [5.76          | [5.76          | [9.59          | [7.00           | [7.00           | [8.79          | [5.48          | [5.48          | [10.5          | [7.15          | [7.15          |
|                 | 2]                                          | 7]             | 5]             | 5]             | 0]             | 4]              | 4]              | 7]             | 0]             | 0]             | 6]             | 5]             | 5]             |
| For deta        | For details, please refer notes to Table 2. |                |                |                |                |                 |                 |                |                |                |                |                |                |

| 1                              | Table 2: Results for Total Factor Productivity<br>1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - |                                       |                                        |                                       |                                       |                                        |                                                       |                                        |                                       |                                       |                                        |                                       |                                        |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|
| 10                             | g tfp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\theta_{it} = \theta_{it}$           | $_{i} + \lambda_{h}$                   | log /                                 | $n_{it} + \lambda$                    | $l_b \log$                             | $S_{it}^{0} +$                                        | $\lambda_a \log$                       | $g s_{it}^{uc}$                       | $+\lambda_f$                          | $\log s_i$                             | $\mathcal{E}_t + \mathcal{E}_t$       | it•                                    |
|                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                     |                                        |                                       | Panel A                               | A: Co-in                               | tegratio                                              | on Test                                |                                       |                                       |                                        |                                       |                                        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | L=1                                    |                                       |                                       | L=2                                    |                                                       |                                        | L=3                                   |                                       |                                        | L=4                                   |                                        |
| Crow                           | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ii)                                  | (iii)                                  | (iv)                                  | (ii)                                  | (iii)                                  | (iv)                                                  | (ii)                                   | (iii)                                 | (iv)                                  | (ii)                                   | (iii)                                 | (iv)                                   |
| p-t-<br>stats                  | 3.02<br>1 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.90<br>5 <sup>b</sup>                | 2.92<br>9 <sup>a</sup>                 | -<br>2.92<br>9 <sup>a</sup>           | 2.67<br>4 <sup>a</sup>                | 3.49<br>7 <sup>a</sup>                 | 4.72<br>3 <sup>a</sup>                                | 2.67<br>4 <sup>a</sup>                 | 3.49<br>7 <sup>a</sup>                | 3.49<br>7 <sup>a</sup>                | 1.92<br>0 <sup>b</sup>                 | 2.96<br>9 <sup>a</sup>                | 2.96<br>9 <sup>a</sup>                 |
| Panel B: FMOLS Results.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                        |                                       |                                       |                                        |                                                       |                                        |                                       |                                       |                                        |                                       |                                        |
| h <sub>it</sub>                | 0.42<br>3 <sup>a</sup><br>[2.43<br>0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.42<br>1<br>[1.44<br>5]              | 0.24<br>2<br>[0.00<br>0]               | 0.54<br>4 <sup>a</sup><br>[2.80<br>9] | 0.43<br>5<br>[1.37<br>8]              | 0.27<br>3<br>[0.23<br>8]               | 0.70<br>4 <sup>a</sup><br>[3.06<br>0]                 | 0.70<br>3 <sup>°</sup><br>[1.77<br>0]  | 0.32<br>5<br>[0.12<br>3]              | 0.75<br>9 <sup>a</sup><br>[3.04<br>0] | 1.03<br>4 <sup>b</sup><br>[2.26<br>8]  | 0.33<br>1<br>[-<br>0.35<br>6]         | 0.74<br>0 <sup>a</sup><br>[3.37<br>5]  |
| $S_{it}^{ae}$                  | 0.17<br>0 <sup>°a</sup><br>[8.25<br>5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                     | 0.06<br>9 <sup>b</sup><br>[2.18<br>6]  | -                                     | -                                     | 0.09<br>9 <sup>°a</sup><br>[2.79<br>9] | -                                                     | -                                      | 0.10<br>0 <sup>ª</sup><br>[3.27<br>8] | -                                     | -                                      | 0.09<br>4 <sup>a</sup><br>[4.12<br>6] | -                                      |
| $S_{it}^{Oae}$                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                     | -                                      | 0.06<br>9 <sup>b</sup><br>[2.18<br>6] | -                                     | -                                      | 0.09<br>9 <sup>ª</sup><br>[2.79<br>9]                 | -                                      | -                                     | 0.10<br>0 <sup>ª</sup><br>[3.27<br>8] | -                                      | -                                     | 0.09<br>4 <sup>a</sup><br>[4.12<br>6]  |
| $S_{it}^{f-bus}$               | 0.03<br>1 <sup>a</sup><br>[2.63<br>3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03<br>7 <sup>a</sup><br>[4.79<br>8] | 0.03<br>2 <sup>ª</sup><br>[3.58<br>3]  | 0.03<br>2 <sup>ª</sup><br>[3.58<br>3] | 0.05<br>1 <sup>a</sup><br>[5.83<br>5] | 0.04<br>1 <sup>a</sup><br>[4.18<br>5]  | 0.04<br>1 <sup>a</sup><br>[4.18<br>5]                 | 0.07<br>6 <sup>°a</sup><br>[6.61<br>8] | 0.05<br>1 <sup>a</sup><br>[4.73<br>2] | 0.05<br>1 <sup>a</sup><br>[4.73<br>2] | 0.09<br>5 <sup>a</sup><br>[7.47<br>6]  | 0.05<br>9 <sup>a</sup><br>[5.58<br>9] | 0.05<br>9 <sup>°a</sup><br>[5.58<br>9] |
| $S_{it-1}^{b}$                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.14<br>9 <sup>a</sup><br>[7.50<br>4] | 0.10<br>9 <sup>°a</sup><br>[3.23<br>1] | 0.10<br>9 <sup>ª</sup><br>[3.23<br>1] | -                                     | -                                      | -                                                     | -                                      | -                                     | -                                     | -                                      | -                                     | -                                      |
| $S_{it-2}^b$                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                     | -                                      | -                                     | 0.13<br>1 <sup>a</sup><br>[7.65<br>2] | 0.07<br>0 <sup>°a</sup><br>[3.55<br>0] | 0.07<br>0 <sup>°a</sup><br>[3.55<br>0]                | -                                      | -                                     | -                                     | -                                      | -                                     | -                                      |
| $S_{it-3}^{b}$                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                     | -                                      | -                                     | -                                     | -                                      | -                                                     | 0.07<br>2 <sup>°a</sup><br>[7.60<br>5] | 0.06<br>2 <sup>a</sup><br>[4.16<br>3] | 0.06<br>2 <sup>a</sup><br>[4.16<br>3] |                                        | -                                     | -                                      |
| $S_{it-4}^b$                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                     | -                                      | -                                     | -                                     | -                                      | -                                                     | -                                      | -                                     | -                                     | 0.00<br>7 <sup>a</sup><br>[7.38<br>3]  | 0.06<br>3 <sup>a</sup><br>[4.07<br>7] | 0.06<br>3 <sup>ª</sup><br>[4.07<br>7]  |
| Panel                          | C: For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eign Kn                               | owledg                                 | e Stock                               | s based<br>to                         | d on Ba $_{it}$ otal ( $s_{it}^{f}$    | sic ( <i>s<sub>it</sub><sup>f-</sup></i><br>-tl ) R&D | <sup>-b</sup> ), App<br>).             | lied an                               | d Expei                               | rimenta                                | $(S_{it}^{f-ae})$                     | ) and                                  |
| S <sub>it</sub> <sup>f-b</sup> | 0.01<br>6 <sup>b</sup><br>[1.86<br>2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12<br>6 <sup>b</sup><br>[2.34<br>7] | -<br>0.00<br>4<br>[0.20<br>5]          | -<br>0.00<br>4<br>[0.20<br>5]         | 0.12<br>9 <sup>b</sup><br>[2.55<br>6] | 0.01<br>5<br>[1.01<br>4]               | 0.01<br>5<br>[1.01<br>4]                              | 0.01<br>4 <sup>a</sup><br>[3.50<br>7]  | 0.03<br>9 <sup>a</sup><br>[2.85<br>3] | 0.03<br>9 <sup>a</sup><br>[2.85<br>3] | 0.06<br>1 <sup>a</sup><br>[5.24<br>3]  | 0.05<br>3 <sup>a</sup><br>[4.40<br>7] | 0.05<br>3 <sup>a</sup><br>[4.40<br>7]  |
| S <sup>f-ae</sup>              | -<br>0.00<br>1<br>[0.67<br>7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>0.01<br>0<br>[1.30<br>]          | -<br>0.01<br>4<br>[-<br>0.58]          | -<br>0.01<br>4<br>[-<br>0.58]         | 0.01<br>3 <sup>c</sup><br>[1.94<br>]  | -<br>0.00<br>4<br>[-<br>0.00]          | -<br>0.00<br>4<br>[-<br>0.00]                         | 0.01<br>1 <sup>a</sup><br>[3.04<br>5]  | 0.01<br>5<br>[1.07<br>2]              | 0.01<br>5<br>[1.07<br>2]              | 0.05<br>7 <sup>°a</sup><br>[4.97<br>4] | 0.03<br>1 <sup>a</sup><br>[2.71<br>7] | 0.03<br>1 <sup>a</sup><br>[2.71<br>7]  |
| $s^{f-tl}$                     | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                                  | 0.03                                   | 0.03                                  | 0.05                                  | 0.04                                   | 0.04                                                  | 0.08                                   | 0.06                                  | 0.06                                  | 0.10                                   | 0.07                                  | 0.07                                   |

| 10                              | Table 2: Results for Total Factor Productivity $\log tfp_{ie} = \theta_i + \lambda_i \log h_{ie} + \lambda_i \log s_{ie}^b + \lambda_i \log s_{ie}^{ae} + \lambda_i \log s_{ie}^f + \varepsilon_{ie}$ |                                       |                                       |                                       |                                       |                                        |                                                                  |                                        |                                       |                                       |                                       |                                        |                                        |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|
|                                 | Panel A: Co-integration Test                                                                                                                                                                          |                                       |                                       |                                       |                                       |                                        |                                                                  |                                        |                                       |                                       |                                       |                                        |                                        |
|                                 |                                                                                                                                                                                                       |                                       | I =1                                  |                                       | I =?                                  |                                        |                                                                  |                                        | I =3                                  |                                       | I =4                                  |                                        |                                        |
|                                 | (i)                                                                                                                                                                                                   | (ii)                                  | (iii)                                 | (iv)                                  | (ii)                                  | (iii)                                  | (iv)                                                             | (ii)                                   | (iii)                                 | (iv)                                  | (ii)                                  | (iii)                                  | (iv)                                   |
| Grou<br>p-t-<br>stats           | -<br>3.02<br>1 <sup>a</sup>                                                                                                                                                                           | -<br>1.90<br>5 <sup>b</sup>           | -<br>2.92<br>9 <sup>a</sup>           | -<br>2.92<br>9 <sup>a</sup>           | -<br>2.67<br>4 <sup>a</sup>           | -<br>3.49<br>7 <sup>a</sup>            | -<br>4.72<br>3 <sup>a</sup>                                      | -<br>2.67<br>4 <sup>a</sup>            | -<br>3.49<br>7 <sup>a</sup>           | -<br>3.49<br>7 <sup>a</sup>           | -<br>1.92<br>0 <sup>b</sup>           | -<br>2.96<br>9 <sup>a</sup>            | -<br>2.96<br>9 <sup>a</sup>            |
| Panel B: FMOLS Results.         |                                                                                                                                                                                                       |                                       |                                       |                                       |                                       |                                        |                                                                  |                                        |                                       |                                       |                                       |                                        |                                        |
| h <sub>it</sub>                 | 0.42<br>3 <sup>a</sup><br>[2.43<br>0]                                                                                                                                                                 | 0.42<br>1<br>[1.44<br>5]              | 0.24<br>2<br>[0.00<br>0]              | 0.54<br>4 <sup>a</sup><br>[2.80<br>9] | 0.43<br>5<br>[1.37<br>8]              | 0.27<br>3<br>[0.23<br>8]               | 0.70<br>4 <sup>a</sup><br>[3.06<br>0]                            | 0.70<br>3 <sup>°</sup><br>[1.77<br>0]  | 0.32<br>5<br>[0.12<br>3]              | 0.75<br>9 <sup>a</sup><br>[3.04<br>0] | 1.03<br>4 <sup>b</sup><br>[2.26<br>8] | 0.33<br>1<br>[-<br>0.35<br>6]          | 0.74<br>0 <sup>a</sup><br>[3.37<br>5]  |
| $S_{it}^{ae}$                   | 0.17<br>0 <sup>a</sup><br>[8.25<br>5]                                                                                                                                                                 | -                                     | 0.06<br>9 <sup>b</sup><br>[2.18<br>6] | -                                     | -                                     | 0.09<br>9 <sup>a</sup><br>[2.79<br>9]  | -                                                                | -                                      | 0.10<br>0 <sup>ª</sup><br>[3.27<br>8] | -                                     | -                                     | 0.09<br>4 <sup>a</sup><br>[4.12<br>6]  | -                                      |
| S <sub>it</sub> <sup>Oae</sup>  | -                                                                                                                                                                                                     | -                                     | -                                     | 0.06<br>9 <sup>b</sup><br>[2.18<br>6] | -                                     | -                                      | 0.09<br>9 <sup>°a</sup><br>[2.79<br>9]                           | -                                      | -                                     | 0.10<br>0 <sup>a</sup><br>[3.27<br>8] | -                                     | -                                      | 0.09<br>4 <sup>ª</sup><br>[4.12<br>6]  |
| $S_{it}^{f-bus}$                | 0.03<br>1 <sup>a</sup><br>[2.63<br>3]                                                                                                                                                                 | 0.03<br>7 <sup>a</sup><br>[4.79<br>8] | 0.03<br>2 <sup>a</sup><br>[3.58<br>3] | 0.03<br>2 <sup>a</sup><br>[3.58<br>3] | 0.05<br>1 <sup>a</sup><br>[5.83<br>5] | 0.04<br>1 <sup>a</sup><br>[4.18<br>5]  | 0.04<br>1 <sup>a</sup><br>[4.18<br>5]                            | 0.07<br>6 <sup>°a</sup><br>[6.61<br>8] | 0.05<br>1 <sup>a</sup><br>[4.73<br>2] | 0.05<br>1 <sup>a</sup><br>[4.73<br>2] | 0.09<br>5 <sup>a</sup><br>[7.47<br>6] | 0.05<br>9 <sup>°a</sup><br>[5.58<br>9] | 0.05<br>9 <sup>°a</sup><br>[5.58<br>9] |
| $S_{it-1}^{b}$                  | -                                                                                                                                                                                                     | 0.14<br>9 <sup>ª</sup><br>[7.50<br>4] | 0.10<br>9 <sup>ª</sup><br>[3.23<br>1] | 0.10<br>9 <sup>ª</sup><br>[3.23<br>1] | -                                     | -                                      | -                                                                | -                                      | -                                     | -                                     | -                                     | -                                      | -                                      |
| $S_{it-2}^b$                    | -                                                                                                                                                                                                     | -                                     | -                                     | -                                     | 0.13<br>1 <sup>a</sup><br>[7.65<br>2] | 0.07<br>0 <sup>°a</sup><br>[3.55<br>0] | 0.07<br>0 <sup>°a</sup><br>[3.55<br>0]                           | -                                      | -                                     | -                                     | -                                     | -                                      | -                                      |
| $S_{it-3}^{b}$                  | -                                                                                                                                                                                                     | -                                     | -                                     | -                                     | -                                     | -                                      | -                                                                | 0.07<br>2 <sup>°a</sup><br>[7.60<br>5] | 0.06<br>2 <sup>a</sup><br>[4.16<br>3] | 0.06<br>2 <sup>a</sup><br>[4.16<br>3] |                                       | -                                      | -                                      |
| $s^b_{it-4}$                    | -                                                                                                                                                                                                     | -                                     | -                                     | -                                     | -                                     | -                                      | -                                                                | -                                      | -                                     | -                                     | 0.00<br>7 <sup>a</sup><br>[7.38<br>3] | 0.06<br>3 <sup>a</sup><br>[4.07<br>7]  | 0.06<br>3 <sup>a</sup><br>[4.07<br>7]  |
| Panel                           | C: For                                                                                                                                                                                                | eign Kn                               | owledg                                | e Stock                               | s based<br>to                         | d on Ba<br>otal ( $s_{it}^{f}$         | sic ( <i>s<sub>it</sub><sup>-</sup></i><br>- <sup>tl</sup> ) R&I | <sup>b</sup> ), App<br>).              | lied an                               | d Expe                                | rimenta                               | $I(S_{it}^{f-ae})$                     | ) and                                  |
| $S_{it}^{f-b}$                  | 0.01<br>6 <sup>b</sup><br>[1.86<br>2]                                                                                                                                                                 | 0.12<br>6 <sup>b</sup><br>[2.34<br>7] | -<br>0.00<br>4<br>[0.20<br>5]         | -<br>0.00<br>4<br>[0.20<br>5]         | 0.12<br>9 <sup>b</sup><br>[2.55<br>6] | 0.01<br>5<br>[1.01<br>4]               | 0.01<br>5<br>[1.01<br>4]                                         | 0.01<br>4 <sup>a</sup><br>[3.50<br>7]  | 0.03<br>9 <sup>a</sup><br>[2.85<br>3] | 0.03<br>9 <sup>a</sup><br>[2.85<br>3] | 0.06<br>1 <sup>a</sup><br>[5.24<br>3] | 0.05<br>3 <sup>a</sup><br>[4.40<br>7]  | 0.05<br>3 <sup>a</sup><br>[4.40<br>7]  |
| S <sub>it</sub> <sup>f-ae</sup> | -<br>0.00<br>1<br>[0.67<br>7]                                                                                                                                                                         | -<br>0.01<br>0<br>[1.30<br>]          | -<br>0.01<br>4<br>[-<br>0.58]         | -<br>0.01<br>4<br>[-<br>0.58]         | 0.01<br>3 <sup>c</sup><br>[1.94<br>]  | -<br>0.00<br>4<br>[-<br>0.00]          | -<br>0.00<br>4<br>[-<br>0.00]                                    | 0.01<br>1 <sup>a</sup><br>[3.04<br>5]  | 0.01<br>5<br>[1.07<br>2]              | 0.01<br>5<br>[1.07<br>2]              | 0.05<br>7 <sup>a</sup><br>[4.97<br>4] | 0.03<br>1 <sup>a</sup><br>[2.71<br>7]  | 0.03<br>1 <sup>a</sup><br>[2.71<br>7]  |
| $S_{it}^{f-tl}$                 | 0.04<br>3 <sup>a</sup>                                                                                                                                                                                | 0.03<br>8 <sup>a</sup>                | 0.03<br>5 <sup>a</sup>                | 0.03<br>5 <sup>a</sup>                | 0.05<br>2 <sup>a</sup>                | 0.04<br>9 <sup>a</sup>                 | 0.04<br>9 <sup>a</sup>                                           | 0.08<br>1 <sup>a</sup>                 | 0.06<br>2 <sup>a</sup>                | 0.06<br>2 <sup>a</sup>                | 0.10<br>6 <sup>a</sup>                | 0.07<br>1 <sup>a</sup>                 | 0.07<br>1 <sup>a</sup>                 |

|        | [3.47                                                                                                                             | [5.08     | [3.86      | [3.86    | [6.10  | [4.53    | [4.53    | [7.03      | [5.38     | [5.38     | [8.11       | [6.56      | [6.56    |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------|--------|----------|----------|------------|-----------|-----------|-------------|------------|----------|
|        | 6]                                                                                                                                | 7]        | 9]         | 9]       | 8]     | 8]       | 8]       | 0]         | 1]        | 1]        | 4]          | 3]         | 3]       |
| inel A | rel A contains group-t-statistic under the null of no co-integration. They are asymptotically standard normal left-sided tests.   |           |            |          |        |          |          |            |           |           |             |            |          |
| mea    | measures of $S_{it}^{f}$ pertain to 15% depreciation rate. Superscripts a, b and c respectively denote significance at 1%, 5% and |           |            |          |        |          |          |            |           |           |             |            |          |
| %. [.] | are t-rat                                                                                                                         | tios. Res | ults are o | computed | by RAT | S proced | ures. Se | ction II c | ontains v | ariable d | efinitions. | . L indica | ates lag |
| ath    |                                                                                                                                   |           |            |          |        |          |          |            |           |           |             |            |          |

Pan All r 10% length.